You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2595 lines
78 KiB
2595 lines
78 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// Linux system calls. |
|
// This file is compiled as ordinary Go code, |
|
// but it is also input to mksyscall, |
|
// which parses the //sys lines and generates system call stubs. |
|
// Note that sometimes we use a lowercase //sys name and |
|
// wrap it in our own nicer implementation. |
|
|
|
package unix |
|
|
|
import ( |
|
"encoding/binary" |
|
"strconv" |
|
"syscall" |
|
"time" |
|
"unsafe" |
|
) |
|
|
|
/* |
|
* Wrapped |
|
*/ |
|
|
|
func Access(path string, mode uint32) (err error) { |
|
return Faccessat(AT_FDCWD, path, mode, 0) |
|
} |
|
|
|
func Chmod(path string, mode uint32) (err error) { |
|
return Fchmodat(AT_FDCWD, path, mode, 0) |
|
} |
|
|
|
func Chown(path string, uid int, gid int) (err error) { |
|
return Fchownat(AT_FDCWD, path, uid, gid, 0) |
|
} |
|
|
|
func Creat(path string, mode uint32) (fd int, err error) { |
|
return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode) |
|
} |
|
|
|
func EpollCreate(size int) (fd int, err error) { |
|
if size <= 0 { |
|
return -1, EINVAL |
|
} |
|
return EpollCreate1(0) |
|
} |
|
|
|
//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error) |
|
//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error) |
|
|
|
func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) { |
|
if pathname == "" { |
|
return fanotifyMark(fd, flags, mask, dirFd, nil) |
|
} |
|
p, err := BytePtrFromString(pathname) |
|
if err != nil { |
|
return err |
|
} |
|
return fanotifyMark(fd, flags, mask, dirFd, p) |
|
} |
|
|
|
//sys fchmodat(dirfd int, path string, mode uint32) (err error) |
|
//sys fchmodat2(dirfd int, path string, mode uint32, flags int) (err error) |
|
|
|
func Fchmodat(dirfd int, path string, mode uint32, flags int) error { |
|
// Linux fchmodat doesn't support the flags parameter, but fchmodat2 does. |
|
// Try fchmodat2 if flags are specified. |
|
if flags != 0 { |
|
err := fchmodat2(dirfd, path, mode, flags) |
|
if err == ENOSYS { |
|
// fchmodat2 isn't available. If the flags are known to be valid, |
|
// return EOPNOTSUPP to indicate that fchmodat doesn't support them. |
|
if flags&^(AT_SYMLINK_NOFOLLOW|AT_EMPTY_PATH) != 0 { |
|
return EINVAL |
|
} else if flags&(AT_SYMLINK_NOFOLLOW|AT_EMPTY_PATH) != 0 { |
|
return EOPNOTSUPP |
|
} |
|
} |
|
return err |
|
} |
|
return fchmodat(dirfd, path, mode) |
|
} |
|
|
|
func InotifyInit() (fd int, err error) { |
|
return InotifyInit1(0) |
|
} |
|
|
|
//sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL |
|
//sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL |
|
|
|
// ioctl itself should not be exposed directly, but additional get/set functions |
|
// for specific types are permissible. These are defined in ioctl.go and |
|
// ioctl_linux.go. |
|
// |
|
// The third argument to ioctl is often a pointer but sometimes an integer. |
|
// Callers should use ioctlPtr when the third argument is a pointer and ioctl |
|
// when the third argument is an integer. |
|
// |
|
// TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr. |
|
|
|
//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error) |
|
|
|
func Link(oldpath string, newpath string) (err error) { |
|
return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0) |
|
} |
|
|
|
func Mkdir(path string, mode uint32) (err error) { |
|
return Mkdirat(AT_FDCWD, path, mode) |
|
} |
|
|
|
func Mknod(path string, mode uint32, dev int) (err error) { |
|
return Mknodat(AT_FDCWD, path, mode, dev) |
|
} |
|
|
|
func Open(path string, mode int, perm uint32) (fd int, err error) { |
|
return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm) |
|
} |
|
|
|
//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) |
|
|
|
func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) { |
|
return openat(dirfd, path, flags|O_LARGEFILE, mode) |
|
} |
|
|
|
//sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error) |
|
|
|
func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) { |
|
return openat2(dirfd, path, how, SizeofOpenHow) |
|
} |
|
|
|
func Pipe(p []int) error { |
|
return Pipe2(p, 0) |
|
} |
|
|
|
//sysnb pipe2(p *[2]_C_int, flags int) (err error) |
|
|
|
func Pipe2(p []int, flags int) error { |
|
if len(p) != 2 { |
|
return EINVAL |
|
} |
|
var pp [2]_C_int |
|
err := pipe2(&pp, flags) |
|
if err == nil { |
|
p[0] = int(pp[0]) |
|
p[1] = int(pp[1]) |
|
} |
|
return err |
|
} |
|
|
|
//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error) |
|
|
|
func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) { |
|
if len(fds) == 0 { |
|
return ppoll(nil, 0, timeout, sigmask) |
|
} |
|
return ppoll(&fds[0], len(fds), timeout, sigmask) |
|
} |
|
|
|
func Poll(fds []PollFd, timeout int) (n int, err error) { |
|
var ts *Timespec |
|
if timeout >= 0 { |
|
ts = new(Timespec) |
|
*ts = NsecToTimespec(int64(timeout) * 1e6) |
|
} |
|
return Ppoll(fds, ts, nil) |
|
} |
|
|
|
//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error) |
|
|
|
func Readlink(path string, buf []byte) (n int, err error) { |
|
return Readlinkat(AT_FDCWD, path, buf) |
|
} |
|
|
|
func Rename(oldpath string, newpath string) (err error) { |
|
return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath) |
|
} |
|
|
|
func Rmdir(path string) error { |
|
return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR) |
|
} |
|
|
|
//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error) |
|
|
|
func Symlink(oldpath string, newpath string) (err error) { |
|
return Symlinkat(oldpath, AT_FDCWD, newpath) |
|
} |
|
|
|
func Unlink(path string) error { |
|
return Unlinkat(AT_FDCWD, path, 0) |
|
} |
|
|
|
//sys Unlinkat(dirfd int, path string, flags int) (err error) |
|
|
|
func Utimes(path string, tv []Timeval) error { |
|
if tv == nil { |
|
err := utimensat(AT_FDCWD, path, nil, 0) |
|
if err != ENOSYS { |
|
return err |
|
} |
|
return utimes(path, nil) |
|
} |
|
if len(tv) != 2 { |
|
return EINVAL |
|
} |
|
var ts [2]Timespec |
|
ts[0] = NsecToTimespec(TimevalToNsec(tv[0])) |
|
ts[1] = NsecToTimespec(TimevalToNsec(tv[1])) |
|
err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0) |
|
if err != ENOSYS { |
|
return err |
|
} |
|
return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) |
|
} |
|
|
|
//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error) |
|
|
|
func UtimesNano(path string, ts []Timespec) error { |
|
return UtimesNanoAt(AT_FDCWD, path, ts, 0) |
|
} |
|
|
|
func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error { |
|
if ts == nil { |
|
return utimensat(dirfd, path, nil, flags) |
|
} |
|
if len(ts) != 2 { |
|
return EINVAL |
|
} |
|
return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags) |
|
} |
|
|
|
func Futimesat(dirfd int, path string, tv []Timeval) error { |
|
if tv == nil { |
|
return futimesat(dirfd, path, nil) |
|
} |
|
if len(tv) != 2 { |
|
return EINVAL |
|
} |
|
return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) |
|
} |
|
|
|
func Futimes(fd int, tv []Timeval) (err error) { |
|
// Believe it or not, this is the best we can do on Linux |
|
// (and is what glibc does). |
|
return Utimes("/proc/self/fd/"+strconv.Itoa(fd), tv) |
|
} |
|
|
|
const ImplementsGetwd = true |
|
|
|
//sys Getcwd(buf []byte) (n int, err error) |
|
|
|
func Getwd() (wd string, err error) { |
|
var buf [PathMax]byte |
|
n, err := Getcwd(buf[0:]) |
|
if err != nil { |
|
return "", err |
|
} |
|
// Getcwd returns the number of bytes written to buf, including the NUL. |
|
if n < 1 || n > len(buf) || buf[n-1] != 0 { |
|
return "", EINVAL |
|
} |
|
// In some cases, Linux can return a path that starts with the |
|
// "(unreachable)" prefix, which can potentially be a valid relative |
|
// path. To work around that, return ENOENT if path is not absolute. |
|
if buf[0] != '/' { |
|
return "", ENOENT |
|
} |
|
|
|
return string(buf[0 : n-1]), nil |
|
} |
|
|
|
func Getgroups() (gids []int, err error) { |
|
n, err := getgroups(0, nil) |
|
if err != nil { |
|
return nil, err |
|
} |
|
if n == 0 { |
|
return nil, nil |
|
} |
|
|
|
// Sanity check group count. Max is 1<<16 on Linux. |
|
if n < 0 || n > 1<<20 { |
|
return nil, EINVAL |
|
} |
|
|
|
a := make([]_Gid_t, n) |
|
n, err = getgroups(n, &a[0]) |
|
if err != nil { |
|
return nil, err |
|
} |
|
gids = make([]int, n) |
|
for i, v := range a[0:n] { |
|
gids[i] = int(v) |
|
} |
|
return |
|
} |
|
|
|
func Setgroups(gids []int) (err error) { |
|
if len(gids) == 0 { |
|
return setgroups(0, nil) |
|
} |
|
|
|
a := make([]_Gid_t, len(gids)) |
|
for i, v := range gids { |
|
a[i] = _Gid_t(v) |
|
} |
|
return setgroups(len(a), &a[0]) |
|
} |
|
|
|
type WaitStatus uint32 |
|
|
|
// Wait status is 7 bits at bottom, either 0 (exited), |
|
// 0x7F (stopped), or a signal number that caused an exit. |
|
// The 0x80 bit is whether there was a core dump. |
|
// An extra number (exit code, signal causing a stop) |
|
// is in the high bits. At least that's the idea. |
|
// There are various irregularities. For example, the |
|
// "continued" status is 0xFFFF, distinguishing itself |
|
// from stopped via the core dump bit. |
|
|
|
const ( |
|
mask = 0x7F |
|
core = 0x80 |
|
exited = 0x00 |
|
stopped = 0x7F |
|
shift = 8 |
|
) |
|
|
|
func (w WaitStatus) Exited() bool { return w&mask == exited } |
|
|
|
func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited } |
|
|
|
func (w WaitStatus) Stopped() bool { return w&0xFF == stopped } |
|
|
|
func (w WaitStatus) Continued() bool { return w == 0xFFFF } |
|
|
|
func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 } |
|
|
|
func (w WaitStatus) ExitStatus() int { |
|
if !w.Exited() { |
|
return -1 |
|
} |
|
return int(w>>shift) & 0xFF |
|
} |
|
|
|
func (w WaitStatus) Signal() syscall.Signal { |
|
if !w.Signaled() { |
|
return -1 |
|
} |
|
return syscall.Signal(w & mask) |
|
} |
|
|
|
func (w WaitStatus) StopSignal() syscall.Signal { |
|
if !w.Stopped() { |
|
return -1 |
|
} |
|
return syscall.Signal(w>>shift) & 0xFF |
|
} |
|
|
|
func (w WaitStatus) TrapCause() int { |
|
if w.StopSignal() != SIGTRAP { |
|
return -1 |
|
} |
|
return int(w>>shift) >> 8 |
|
} |
|
|
|
//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error) |
|
|
|
func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) { |
|
var status _C_int |
|
wpid, err = wait4(pid, &status, options, rusage) |
|
if wstatus != nil { |
|
*wstatus = WaitStatus(status) |
|
} |
|
return |
|
} |
|
|
|
//sys Waitid(idType int, id int, info *Siginfo, options int, rusage *Rusage) (err error) |
|
|
|
func Mkfifo(path string, mode uint32) error { |
|
return Mknod(path, mode|S_IFIFO, 0) |
|
} |
|
|
|
func Mkfifoat(dirfd int, path string, mode uint32) error { |
|
return Mknodat(dirfd, path, mode|S_IFIFO, 0) |
|
} |
|
|
|
func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if sa.Port < 0 || sa.Port > 0xFFFF { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_INET |
|
p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) |
|
p[0] = byte(sa.Port >> 8) |
|
p[1] = byte(sa.Port) |
|
sa.raw.Addr = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil |
|
} |
|
|
|
func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if sa.Port < 0 || sa.Port > 0xFFFF { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_INET6 |
|
p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) |
|
p[0] = byte(sa.Port >> 8) |
|
p[1] = byte(sa.Port) |
|
sa.raw.Scope_id = sa.ZoneId |
|
sa.raw.Addr = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil |
|
} |
|
|
|
func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
name := sa.Name |
|
n := len(name) |
|
if n >= len(sa.raw.Path) { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_UNIX |
|
for i := 0; i < n; i++ { |
|
sa.raw.Path[i] = int8(name[i]) |
|
} |
|
// length is family (uint16), name, NUL. |
|
sl := _Socklen(2) |
|
if n > 0 { |
|
sl += _Socklen(n) + 1 |
|
} |
|
if sa.raw.Path[0] == '@' || (sa.raw.Path[0] == 0 && sl > 3) { |
|
// Check sl > 3 so we don't change unnamed socket behavior. |
|
sa.raw.Path[0] = 0 |
|
// Don't count trailing NUL for abstract address. |
|
sl-- |
|
} |
|
|
|
return unsafe.Pointer(&sa.raw), sl, nil |
|
} |
|
|
|
// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets. |
|
type SockaddrLinklayer struct { |
|
Protocol uint16 |
|
Ifindex int |
|
Hatype uint16 |
|
Pkttype uint8 |
|
Halen uint8 |
|
Addr [8]byte |
|
raw RawSockaddrLinklayer |
|
} |
|
|
|
func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_PACKET |
|
sa.raw.Protocol = sa.Protocol |
|
sa.raw.Ifindex = int32(sa.Ifindex) |
|
sa.raw.Hatype = sa.Hatype |
|
sa.raw.Pkttype = sa.Pkttype |
|
sa.raw.Halen = sa.Halen |
|
sa.raw.Addr = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil |
|
} |
|
|
|
// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets. |
|
type SockaddrNetlink struct { |
|
Family uint16 |
|
Pad uint16 |
|
Pid uint32 |
|
Groups uint32 |
|
raw RawSockaddrNetlink |
|
} |
|
|
|
func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_NETLINK |
|
sa.raw.Pad = sa.Pad |
|
sa.raw.Pid = sa.Pid |
|
sa.raw.Groups = sa.Groups |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil |
|
} |
|
|
|
// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets |
|
// using the HCI protocol. |
|
type SockaddrHCI struct { |
|
Dev uint16 |
|
Channel uint16 |
|
raw RawSockaddrHCI |
|
} |
|
|
|
func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_BLUETOOTH |
|
sa.raw.Dev = sa.Dev |
|
sa.raw.Channel = sa.Channel |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil |
|
} |
|
|
|
// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets |
|
// using the L2CAP protocol. |
|
type SockaddrL2 struct { |
|
PSM uint16 |
|
CID uint16 |
|
Addr [6]uint8 |
|
AddrType uint8 |
|
raw RawSockaddrL2 |
|
} |
|
|
|
func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_BLUETOOTH |
|
psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm)) |
|
psm[0] = byte(sa.PSM) |
|
psm[1] = byte(sa.PSM >> 8) |
|
for i := 0; i < len(sa.Addr); i++ { |
|
sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i] |
|
} |
|
cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid)) |
|
cid[0] = byte(sa.CID) |
|
cid[1] = byte(sa.CID >> 8) |
|
sa.raw.Bdaddr_type = sa.AddrType |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil |
|
} |
|
|
|
// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets |
|
// using the RFCOMM protocol. |
|
// |
|
// Server example: |
|
// |
|
// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM) |
|
// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{ |
|
// Channel: 1, |
|
// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00 |
|
// }) |
|
// _ = Listen(fd, 1) |
|
// nfd, sa, _ := Accept(fd) |
|
// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd) |
|
// Read(nfd, buf) |
|
// |
|
// Client example: |
|
// |
|
// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM) |
|
// _ = Connect(fd, &SockaddrRFCOMM{ |
|
// Channel: 1, |
|
// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11 |
|
// }) |
|
// Write(fd, []byte(`hello`)) |
|
type SockaddrRFCOMM struct { |
|
// Addr represents a bluetooth address, byte ordering is little-endian. |
|
Addr [6]uint8 |
|
|
|
// Channel is a designated bluetooth channel, only 1-30 are available for use. |
|
// Since Linux 2.6.7 and further zero value is the first available channel. |
|
Channel uint8 |
|
|
|
raw RawSockaddrRFCOMM |
|
} |
|
|
|
func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_BLUETOOTH |
|
sa.raw.Channel = sa.Channel |
|
sa.raw.Bdaddr = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil |
|
} |
|
|
|
// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets. |
|
// The RxID and TxID fields are used for transport protocol addressing in |
|
// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with |
|
// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning. |
|
// |
|
// The SockaddrCAN struct must be bound to the socket file descriptor |
|
// using Bind before the CAN socket can be used. |
|
// |
|
// // Read one raw CAN frame |
|
// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW) |
|
// addr := &SockaddrCAN{Ifindex: index} |
|
// Bind(fd, addr) |
|
// frame := make([]byte, 16) |
|
// Read(fd, frame) |
|
// |
|
// The full SocketCAN documentation can be found in the linux kernel |
|
// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt |
|
type SockaddrCAN struct { |
|
Ifindex int |
|
RxID uint32 |
|
TxID uint32 |
|
raw RawSockaddrCAN |
|
} |
|
|
|
func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_CAN |
|
sa.raw.Ifindex = int32(sa.Ifindex) |
|
rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) |
|
for i := 0; i < 4; i++ { |
|
sa.raw.Addr[i] = rx[i] |
|
} |
|
tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) |
|
for i := 0; i < 4; i++ { |
|
sa.raw.Addr[i+4] = tx[i] |
|
} |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil |
|
} |
|
|
|
// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939 |
|
// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information |
|
// on the purposes of the fields, check the official linux kernel documentation |
|
// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst |
|
type SockaddrCANJ1939 struct { |
|
Ifindex int |
|
Name uint64 |
|
PGN uint32 |
|
Addr uint8 |
|
raw RawSockaddrCAN |
|
} |
|
|
|
func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_CAN |
|
sa.raw.Ifindex = int32(sa.Ifindex) |
|
n := (*[8]byte)(unsafe.Pointer(&sa.Name)) |
|
for i := 0; i < 8; i++ { |
|
sa.raw.Addr[i] = n[i] |
|
} |
|
p := (*[4]byte)(unsafe.Pointer(&sa.PGN)) |
|
for i := 0; i < 4; i++ { |
|
sa.raw.Addr[i+8] = p[i] |
|
} |
|
sa.raw.Addr[12] = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil |
|
} |
|
|
|
// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets. |
|
// SockaddrALG enables userspace access to the Linux kernel's cryptography |
|
// subsystem. The Type and Name fields specify which type of hash or cipher |
|
// should be used with a given socket. |
|
// |
|
// To create a file descriptor that provides access to a hash or cipher, both |
|
// Bind and Accept must be used. Once the setup process is complete, input |
|
// data can be written to the socket, processed by the kernel, and then read |
|
// back as hash output or ciphertext. |
|
// |
|
// Here is an example of using an AF_ALG socket with SHA1 hashing. |
|
// The initial socket setup process is as follows: |
|
// |
|
// // Open a socket to perform SHA1 hashing. |
|
// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0) |
|
// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"} |
|
// unix.Bind(fd, addr) |
|
// // Note: unix.Accept does not work at this time; must invoke accept() |
|
// // manually using unix.Syscall. |
|
// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0) |
|
// |
|
// Once a file descriptor has been returned from Accept, it may be used to |
|
// perform SHA1 hashing. The descriptor is not safe for concurrent use, but |
|
// may be re-used repeatedly with subsequent Write and Read operations. |
|
// |
|
// When hashing a small byte slice or string, a single Write and Read may |
|
// be used: |
|
// |
|
// // Assume hashfd is already configured using the setup process. |
|
// hash := os.NewFile(hashfd, "sha1") |
|
// // Hash an input string and read the results. Each Write discards |
|
// // previous hash state. Read always reads the current state. |
|
// b := make([]byte, 20) |
|
// for i := 0; i < 2; i++ { |
|
// io.WriteString(hash, "Hello, world.") |
|
// hash.Read(b) |
|
// fmt.Println(hex.EncodeToString(b)) |
|
// } |
|
// // Output: |
|
// // 2ae01472317d1935a84797ec1983ae243fc6aa28 |
|
// // 2ae01472317d1935a84797ec1983ae243fc6aa28 |
|
// |
|
// For hashing larger byte slices, or byte streams such as those read from |
|
// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update |
|
// the hash digest instead of creating a new one for a given chunk and finalizing it. |
|
// |
|
// // Assume hashfd and addr are already configured using the setup process. |
|
// hash := os.NewFile(hashfd, "sha1") |
|
// // Hash the contents of a file. |
|
// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz") |
|
// b := make([]byte, 4096) |
|
// for { |
|
// n, err := f.Read(b) |
|
// if err == io.EOF { |
|
// break |
|
// } |
|
// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr) |
|
// } |
|
// hash.Read(b) |
|
// fmt.Println(hex.EncodeToString(b)) |
|
// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5 |
|
// |
|
// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html. |
|
type SockaddrALG struct { |
|
Type string |
|
Name string |
|
Feature uint32 |
|
Mask uint32 |
|
raw RawSockaddrALG |
|
} |
|
|
|
func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
// Leave room for NUL byte terminator. |
|
if len(sa.Type) > len(sa.raw.Type)-1 { |
|
return nil, 0, EINVAL |
|
} |
|
if len(sa.Name) > len(sa.raw.Name)-1 { |
|
return nil, 0, EINVAL |
|
} |
|
|
|
sa.raw.Family = AF_ALG |
|
sa.raw.Feat = sa.Feature |
|
sa.raw.Mask = sa.Mask |
|
|
|
copy(sa.raw.Type[:], sa.Type) |
|
copy(sa.raw.Name[:], sa.Name) |
|
|
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil |
|
} |
|
|
|
// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets. |
|
// SockaddrVM provides access to Linux VM sockets: a mechanism that enables |
|
// bidirectional communication between a hypervisor and its guest virtual |
|
// machines. |
|
type SockaddrVM struct { |
|
// CID and Port specify a context ID and port address for a VM socket. |
|
// Guests have a unique CID, and hosts may have a well-known CID of: |
|
// - VMADDR_CID_HYPERVISOR: refers to the hypervisor process. |
|
// - VMADDR_CID_LOCAL: refers to local communication (loopback). |
|
// - VMADDR_CID_HOST: refers to other processes on the host. |
|
CID uint32 |
|
Port uint32 |
|
Flags uint8 |
|
raw RawSockaddrVM |
|
} |
|
|
|
func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_VSOCK |
|
sa.raw.Port = sa.Port |
|
sa.raw.Cid = sa.CID |
|
sa.raw.Flags = sa.Flags |
|
|
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil |
|
} |
|
|
|
type SockaddrXDP struct { |
|
Flags uint16 |
|
Ifindex uint32 |
|
QueueID uint32 |
|
SharedUmemFD uint32 |
|
raw RawSockaddrXDP |
|
} |
|
|
|
func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_XDP |
|
sa.raw.Flags = sa.Flags |
|
sa.raw.Ifindex = sa.Ifindex |
|
sa.raw.Queue_id = sa.QueueID |
|
sa.raw.Shared_umem_fd = sa.SharedUmemFD |
|
|
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil |
|
} |
|
|
|
// This constant mirrors the #define of PX_PROTO_OE in |
|
// linux/if_pppox.h. We're defining this by hand here instead of |
|
// autogenerating through mkerrors.sh because including |
|
// linux/if_pppox.h causes some declaration conflicts with other |
|
// includes (linux/if_pppox.h includes linux/in.h, which conflicts |
|
// with netinet/in.h). Given that we only need a single zero constant |
|
// out of that file, it's cleaner to just define it by hand here. |
|
const px_proto_oe = 0 |
|
|
|
type SockaddrPPPoE struct { |
|
SID uint16 |
|
Remote []byte |
|
Dev string |
|
raw RawSockaddrPPPoX |
|
} |
|
|
|
func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if len(sa.Remote) != 6 { |
|
return nil, 0, EINVAL |
|
} |
|
if len(sa.Dev) > IFNAMSIZ-1 { |
|
return nil, 0, EINVAL |
|
} |
|
|
|
*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX |
|
// This next field is in host-endian byte order. We can't use the |
|
// same unsafe pointer cast as above, because this value is not |
|
// 32-bit aligned and some architectures don't allow unaligned |
|
// access. |
|
// |
|
// However, the value of px_proto_oe is 0, so we can use |
|
// encoding/binary helpers to write the bytes without worrying |
|
// about the ordering. |
|
binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe) |
|
// This field is deliberately big-endian, unlike the previous |
|
// one. The kernel expects SID to be in network byte order. |
|
binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID) |
|
copy(sa.raw[8:14], sa.Remote) |
|
for i := 14; i < 14+IFNAMSIZ; i++ { |
|
sa.raw[i] = 0 |
|
} |
|
copy(sa.raw[14:], sa.Dev) |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil |
|
} |
|
|
|
// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets. |
|
// For more information on TIPC, see: http://tipc.sourceforge.net/. |
|
type SockaddrTIPC struct { |
|
// Scope is the publication scopes when binding service/service range. |
|
// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE. |
|
Scope int |
|
|
|
// Addr is the type of address used to manipulate a socket. Addr must be |
|
// one of: |
|
// - *TIPCSocketAddr: "id" variant in the C addr union |
|
// - *TIPCServiceRange: "nameseq" variant in the C addr union |
|
// - *TIPCServiceName: "name" variant in the C addr union |
|
// |
|
// If nil, EINVAL will be returned when the structure is used. |
|
Addr TIPCAddr |
|
|
|
raw RawSockaddrTIPC |
|
} |
|
|
|
// TIPCAddr is implemented by types that can be used as an address for |
|
// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange, |
|
// and *TIPCServiceName. |
|
type TIPCAddr interface { |
|
tipcAddrtype() uint8 |
|
tipcAddr() [12]byte |
|
} |
|
|
|
func (sa *TIPCSocketAddr) tipcAddr() [12]byte { |
|
var out [12]byte |
|
copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:]) |
|
return out |
|
} |
|
|
|
func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR } |
|
|
|
func (sa *TIPCServiceRange) tipcAddr() [12]byte { |
|
var out [12]byte |
|
copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:]) |
|
return out |
|
} |
|
|
|
func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE } |
|
|
|
func (sa *TIPCServiceName) tipcAddr() [12]byte { |
|
var out [12]byte |
|
copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:]) |
|
return out |
|
} |
|
|
|
func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR } |
|
|
|
func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
if sa.Addr == nil { |
|
return nil, 0, EINVAL |
|
} |
|
sa.raw.Family = AF_TIPC |
|
sa.raw.Scope = int8(sa.Scope) |
|
sa.raw.Addrtype = sa.Addr.tipcAddrtype() |
|
sa.raw.Addr = sa.Addr.tipcAddr() |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil |
|
} |
|
|
|
// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets. |
|
type SockaddrL2TPIP struct { |
|
Addr [4]byte |
|
ConnId uint32 |
|
raw RawSockaddrL2TPIP |
|
} |
|
|
|
func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_INET |
|
sa.raw.Conn_id = sa.ConnId |
|
sa.raw.Addr = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil |
|
} |
|
|
|
// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets. |
|
type SockaddrL2TPIP6 struct { |
|
Addr [16]byte |
|
ZoneId uint32 |
|
ConnId uint32 |
|
raw RawSockaddrL2TPIP6 |
|
} |
|
|
|
func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_INET6 |
|
sa.raw.Conn_id = sa.ConnId |
|
sa.raw.Scope_id = sa.ZoneId |
|
sa.raw.Addr = sa.Addr |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil |
|
} |
|
|
|
// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets. |
|
type SockaddrIUCV struct { |
|
UserID string |
|
Name string |
|
raw RawSockaddrIUCV |
|
} |
|
|
|
func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Family = AF_IUCV |
|
// These are EBCDIC encoded by the kernel, but we still need to pad them |
|
// with blanks. Initializing with blanks allows the caller to feed in either |
|
// a padded or an unpadded string. |
|
for i := 0; i < 8; i++ { |
|
sa.raw.Nodeid[i] = ' ' |
|
sa.raw.User_id[i] = ' ' |
|
sa.raw.Name[i] = ' ' |
|
} |
|
if len(sa.UserID) > 8 || len(sa.Name) > 8 { |
|
return nil, 0, EINVAL |
|
} |
|
for i, b := range []byte(sa.UserID[:]) { |
|
sa.raw.User_id[i] = int8(b) |
|
} |
|
for i, b := range []byte(sa.Name[:]) { |
|
sa.raw.Name[i] = int8(b) |
|
} |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil |
|
} |
|
|
|
type SockaddrNFC struct { |
|
DeviceIdx uint32 |
|
TargetIdx uint32 |
|
NFCProtocol uint32 |
|
raw RawSockaddrNFC |
|
} |
|
|
|
func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Sa_family = AF_NFC |
|
sa.raw.Dev_idx = sa.DeviceIdx |
|
sa.raw.Target_idx = sa.TargetIdx |
|
sa.raw.Nfc_protocol = sa.NFCProtocol |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil |
|
} |
|
|
|
type SockaddrNFCLLCP struct { |
|
DeviceIdx uint32 |
|
TargetIdx uint32 |
|
NFCProtocol uint32 |
|
DestinationSAP uint8 |
|
SourceSAP uint8 |
|
ServiceName string |
|
raw RawSockaddrNFCLLCP |
|
} |
|
|
|
func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) { |
|
sa.raw.Sa_family = AF_NFC |
|
sa.raw.Dev_idx = sa.DeviceIdx |
|
sa.raw.Target_idx = sa.TargetIdx |
|
sa.raw.Nfc_protocol = sa.NFCProtocol |
|
sa.raw.Dsap = sa.DestinationSAP |
|
sa.raw.Ssap = sa.SourceSAP |
|
if len(sa.ServiceName) > len(sa.raw.Service_name) { |
|
return nil, 0, EINVAL |
|
} |
|
copy(sa.raw.Service_name[:], sa.ServiceName) |
|
sa.raw.SetServiceNameLen(len(sa.ServiceName)) |
|
return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil |
|
} |
|
|
|
var socketProtocol = func(fd int) (int, error) { |
|
return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL) |
|
} |
|
|
|
func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) { |
|
switch rsa.Addr.Family { |
|
case AF_NETLINK: |
|
pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrNetlink) |
|
sa.Family = pp.Family |
|
sa.Pad = pp.Pad |
|
sa.Pid = pp.Pid |
|
sa.Groups = pp.Groups |
|
return sa, nil |
|
|
|
case AF_PACKET: |
|
pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrLinklayer) |
|
sa.Protocol = pp.Protocol |
|
sa.Ifindex = int(pp.Ifindex) |
|
sa.Hatype = pp.Hatype |
|
sa.Pkttype = pp.Pkttype |
|
sa.Halen = pp.Halen |
|
sa.Addr = pp.Addr |
|
return sa, nil |
|
|
|
case AF_UNIX: |
|
pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrUnix) |
|
if pp.Path[0] == 0 { |
|
// "Abstract" Unix domain socket. |
|
// Rewrite leading NUL as @ for textual display. |
|
// (This is the standard convention.) |
|
// Not friendly to overwrite in place, |
|
// but the callers below don't care. |
|
pp.Path[0] = '@' |
|
} |
|
|
|
// Assume path ends at NUL. |
|
// This is not technically the Linux semantics for |
|
// abstract Unix domain sockets--they are supposed |
|
// to be uninterpreted fixed-size binary blobs--but |
|
// everyone uses this convention. |
|
n := 0 |
|
for n < len(pp.Path) && pp.Path[n] != 0 { |
|
n++ |
|
} |
|
sa.Name = string(unsafe.Slice((*byte)(unsafe.Pointer(&pp.Path[0])), n)) |
|
return sa, nil |
|
|
|
case AF_INET: |
|
proto, err := socketProtocol(fd) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
switch proto { |
|
case IPPROTO_L2TP: |
|
pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrL2TPIP) |
|
sa.ConnId = pp.Conn_id |
|
sa.Addr = pp.Addr |
|
return sa, nil |
|
default: |
|
pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrInet4) |
|
p := (*[2]byte)(unsafe.Pointer(&pp.Port)) |
|
sa.Port = int(p[0])<<8 + int(p[1]) |
|
sa.Addr = pp.Addr |
|
return sa, nil |
|
} |
|
|
|
case AF_INET6: |
|
proto, err := socketProtocol(fd) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
switch proto { |
|
case IPPROTO_L2TP: |
|
pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrL2TPIP6) |
|
sa.ConnId = pp.Conn_id |
|
sa.ZoneId = pp.Scope_id |
|
sa.Addr = pp.Addr |
|
return sa, nil |
|
default: |
|
pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa)) |
|
sa := new(SockaddrInet6) |
|
p := (*[2]byte)(unsafe.Pointer(&pp.Port)) |
|
sa.Port = int(p[0])<<8 + int(p[1]) |
|
sa.ZoneId = pp.Scope_id |
|
sa.Addr = pp.Addr |
|
return sa, nil |
|
} |
|
|
|
case AF_VSOCK: |
|
pp := (*RawSockaddrVM)(unsafe.Pointer(rsa)) |
|
sa := &SockaddrVM{ |
|
CID: pp.Cid, |
|
Port: pp.Port, |
|
Flags: pp.Flags, |
|
} |
|
return sa, nil |
|
case AF_BLUETOOTH: |
|
proto, err := socketProtocol(fd) |
|
if err != nil { |
|
return nil, err |
|
} |
|
// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections |
|
switch proto { |
|
case BTPROTO_L2CAP: |
|
pp := (*RawSockaddrL2)(unsafe.Pointer(rsa)) |
|
sa := &SockaddrL2{ |
|
PSM: pp.Psm, |
|
CID: pp.Cid, |
|
Addr: pp.Bdaddr, |
|
AddrType: pp.Bdaddr_type, |
|
} |
|
return sa, nil |
|
case BTPROTO_RFCOMM: |
|
pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa)) |
|
sa := &SockaddrRFCOMM{ |
|
Channel: pp.Channel, |
|
Addr: pp.Bdaddr, |
|
} |
|
return sa, nil |
|
} |
|
case AF_XDP: |
|
pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa)) |
|
sa := &SockaddrXDP{ |
|
Flags: pp.Flags, |
|
Ifindex: pp.Ifindex, |
|
QueueID: pp.Queue_id, |
|
SharedUmemFD: pp.Shared_umem_fd, |
|
} |
|
return sa, nil |
|
case AF_PPPOX: |
|
pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa)) |
|
if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe { |
|
return nil, EINVAL |
|
} |
|
sa := &SockaddrPPPoE{ |
|
SID: binary.BigEndian.Uint16(pp[6:8]), |
|
Remote: pp[8:14], |
|
} |
|
for i := 14; i < 14+IFNAMSIZ; i++ { |
|
if pp[i] == 0 { |
|
sa.Dev = string(pp[14:i]) |
|
break |
|
} |
|
} |
|
return sa, nil |
|
case AF_TIPC: |
|
pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa)) |
|
|
|
sa := &SockaddrTIPC{ |
|
Scope: int(pp.Scope), |
|
} |
|
|
|
// Determine which union variant is present in pp.Addr by checking |
|
// pp.Addrtype. |
|
switch pp.Addrtype { |
|
case TIPC_SERVICE_RANGE: |
|
sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr)) |
|
case TIPC_SERVICE_ADDR: |
|
sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr)) |
|
case TIPC_SOCKET_ADDR: |
|
sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr)) |
|
default: |
|
return nil, EINVAL |
|
} |
|
|
|
return sa, nil |
|
case AF_IUCV: |
|
pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa)) |
|
|
|
var user [8]byte |
|
var name [8]byte |
|
|
|
for i := 0; i < 8; i++ { |
|
user[i] = byte(pp.User_id[i]) |
|
name[i] = byte(pp.Name[i]) |
|
} |
|
|
|
sa := &SockaddrIUCV{ |
|
UserID: string(user[:]), |
|
Name: string(name[:]), |
|
} |
|
return sa, nil |
|
|
|
case AF_CAN: |
|
proto, err := socketProtocol(fd) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa)) |
|
|
|
switch proto { |
|
case CAN_J1939: |
|
sa := &SockaddrCANJ1939{ |
|
Ifindex: int(pp.Ifindex), |
|
} |
|
name := (*[8]byte)(unsafe.Pointer(&sa.Name)) |
|
for i := 0; i < 8; i++ { |
|
name[i] = pp.Addr[i] |
|
} |
|
pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN)) |
|
for i := 0; i < 4; i++ { |
|
pgn[i] = pp.Addr[i+8] |
|
} |
|
addr := (*[1]byte)(unsafe.Pointer(&sa.Addr)) |
|
addr[0] = pp.Addr[12] |
|
return sa, nil |
|
default: |
|
sa := &SockaddrCAN{ |
|
Ifindex: int(pp.Ifindex), |
|
} |
|
rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) |
|
for i := 0; i < 4; i++ { |
|
rx[i] = pp.Addr[i] |
|
} |
|
tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) |
|
for i := 0; i < 4; i++ { |
|
tx[i] = pp.Addr[i+4] |
|
} |
|
return sa, nil |
|
} |
|
case AF_NFC: |
|
proto, err := socketProtocol(fd) |
|
if err != nil { |
|
return nil, err |
|
} |
|
switch proto { |
|
case NFC_SOCKPROTO_RAW: |
|
pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa)) |
|
sa := &SockaddrNFC{ |
|
DeviceIdx: pp.Dev_idx, |
|
TargetIdx: pp.Target_idx, |
|
NFCProtocol: pp.Nfc_protocol, |
|
} |
|
return sa, nil |
|
case NFC_SOCKPROTO_LLCP: |
|
pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa)) |
|
if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) { |
|
return nil, EINVAL |
|
} |
|
sa := &SockaddrNFCLLCP{ |
|
DeviceIdx: pp.Dev_idx, |
|
TargetIdx: pp.Target_idx, |
|
NFCProtocol: pp.Nfc_protocol, |
|
DestinationSAP: pp.Dsap, |
|
SourceSAP: pp.Ssap, |
|
ServiceName: string(pp.Service_name[:pp.Service_name_len]), |
|
} |
|
return sa, nil |
|
default: |
|
return nil, EINVAL |
|
} |
|
} |
|
return nil, EAFNOSUPPORT |
|
} |
|
|
|
func Accept(fd int) (nfd int, sa Sockaddr, err error) { |
|
var rsa RawSockaddrAny |
|
var len _Socklen = SizeofSockaddrAny |
|
nfd, err = accept4(fd, &rsa, &len, 0) |
|
if err != nil { |
|
return |
|
} |
|
sa, err = anyToSockaddr(fd, &rsa) |
|
if err != nil { |
|
Close(nfd) |
|
nfd = 0 |
|
} |
|
return |
|
} |
|
|
|
func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) { |
|
var rsa RawSockaddrAny |
|
var len _Socklen = SizeofSockaddrAny |
|
nfd, err = accept4(fd, &rsa, &len, flags) |
|
if err != nil { |
|
return |
|
} |
|
if len > SizeofSockaddrAny { |
|
panic("RawSockaddrAny too small") |
|
} |
|
sa, err = anyToSockaddr(fd, &rsa) |
|
if err != nil { |
|
Close(nfd) |
|
nfd = 0 |
|
} |
|
return |
|
} |
|
|
|
func Getsockname(fd int) (sa Sockaddr, err error) { |
|
var rsa RawSockaddrAny |
|
var len _Socklen = SizeofSockaddrAny |
|
if err = getsockname(fd, &rsa, &len); err != nil { |
|
return |
|
} |
|
return anyToSockaddr(fd, &rsa) |
|
} |
|
|
|
func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) { |
|
var value IPMreqn |
|
vallen := _Socklen(SizeofIPMreqn) |
|
err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
|
return &value, err |
|
} |
|
|
|
func GetsockoptUcred(fd, level, opt int) (*Ucred, error) { |
|
var value Ucred |
|
vallen := _Socklen(SizeofUcred) |
|
err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
|
return &value, err |
|
} |
|
|
|
func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) { |
|
var value TCPInfo |
|
vallen := _Socklen(SizeofTCPInfo) |
|
err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
|
return &value, err |
|
} |
|
|
|
// GetsockoptString returns the string value of the socket option opt for the |
|
// socket associated with fd at the given socket level. |
|
func GetsockoptString(fd, level, opt int) (string, error) { |
|
buf := make([]byte, 256) |
|
vallen := _Socklen(len(buf)) |
|
err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) |
|
if err != nil { |
|
if err == ERANGE { |
|
buf = make([]byte, vallen) |
|
err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) |
|
} |
|
if err != nil { |
|
return "", err |
|
} |
|
} |
|
return ByteSliceToString(buf[:vallen]), nil |
|
} |
|
|
|
func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) { |
|
var value TpacketStats |
|
vallen := _Socklen(SizeofTpacketStats) |
|
err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
|
return &value, err |
|
} |
|
|
|
func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) { |
|
var value TpacketStatsV3 |
|
vallen := _Socklen(SizeofTpacketStatsV3) |
|
err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
|
return &value, err |
|
} |
|
|
|
func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) { |
|
return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) |
|
} |
|
|
|
func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error { |
|
return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) |
|
} |
|
|
|
// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a |
|
// socket to filter incoming packets. See 'man 7 socket' for usage information. |
|
func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error { |
|
return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog)) |
|
} |
|
|
|
func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error { |
|
var p unsafe.Pointer |
|
if len(filter) > 0 { |
|
p = unsafe.Pointer(&filter[0]) |
|
} |
|
return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter)) |
|
} |
|
|
|
func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error { |
|
return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp)) |
|
} |
|
|
|
func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error { |
|
return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp)) |
|
} |
|
|
|
func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) { |
|
if len(o) == 0 { |
|
return EINVAL |
|
} |
|
return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o))) |
|
} |
|
|
|
func SetsockoptTCPMD5Sig(fd, level, opt int, s *TCPMD5Sig) error { |
|
return setsockopt(fd, level, opt, unsafe.Pointer(s), unsafe.Sizeof(*s)) |
|
} |
|
|
|
// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html) |
|
|
|
// KeyctlInt calls keyctl commands in which each argument is an int. |
|
// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK, |
|
// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT, |
|
// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT, |
|
// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT. |
|
//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL |
|
|
|
// KeyctlBuffer calls keyctl commands in which the third and fourth |
|
// arguments are a buffer and its length, respectively. |
|
// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE. |
|
//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL |
|
|
|
// KeyctlString calls keyctl commands which return a string. |
|
// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY. |
|
func KeyctlString(cmd int, id int) (string, error) { |
|
// We must loop as the string data may change in between the syscalls. |
|
// We could allocate a large buffer here to reduce the chance that the |
|
// syscall needs to be called twice; however, this is unnecessary as |
|
// the performance loss is negligible. |
|
var buffer []byte |
|
for { |
|
// Try to fill the buffer with data |
|
length, err := KeyctlBuffer(cmd, id, buffer, 0) |
|
if err != nil { |
|
return "", err |
|
} |
|
|
|
// Check if the data was written |
|
if length <= len(buffer) { |
|
// Exclude the null terminator |
|
return string(buffer[:length-1]), nil |
|
} |
|
|
|
// Make a bigger buffer if needed |
|
buffer = make([]byte, length) |
|
} |
|
} |
|
|
|
// Keyctl commands with special signatures. |
|
|
|
// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command. |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html |
|
func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) { |
|
createInt := 0 |
|
if create { |
|
createInt = 1 |
|
} |
|
return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0) |
|
} |
|
|
|
// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the |
|
// key handle permission mask as described in the "keyctl setperm" section of |
|
// http://man7.org/linux/man-pages/man1/keyctl.1.html. |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html |
|
func KeyctlSetperm(id int, perm uint32) error { |
|
_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0) |
|
return err |
|
} |
|
|
|
//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL |
|
|
|
// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command. |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html |
|
func KeyctlJoinSessionKeyring(name string) (ringid int, err error) { |
|
return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name) |
|
} |
|
|
|
//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL |
|
|
|
// KeyctlSearch implements the KEYCTL_SEARCH command. |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_search.3.html |
|
func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) { |
|
return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid) |
|
} |
|
|
|
//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL |
|
|
|
// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This |
|
// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice |
|
// of Iovec (each of which represents a buffer) instead of a single buffer. |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html |
|
func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error { |
|
return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid) |
|
} |
|
|
|
//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL |
|
|
|
// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command |
|
// computes a Diffie-Hellman shared secret based on the provide params. The |
|
// secret is written to the provided buffer and the returned size is the number |
|
// of bytes written (returning an error if there is insufficient space in the |
|
// buffer). If a nil buffer is passed in, this function returns the minimum |
|
// buffer length needed to store the appropriate data. Note that this differs |
|
// from KEYCTL_READ's behavior which always returns the requested payload size. |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html |
|
func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) { |
|
return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer) |
|
} |
|
|
|
// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This |
|
// command limits the set of keys that can be linked to the keyring, regardless |
|
// of keyring permissions. The command requires the "setattr" permission. |
|
// |
|
// When called with an empty keyType the command locks the keyring, preventing |
|
// any further keys from being linked to the keyring. |
|
// |
|
// The "asymmetric" keyType defines restrictions requiring key payloads to be |
|
// DER encoded X.509 certificates signed by keys in another keyring. Restrictions |
|
// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted", |
|
// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain". |
|
// |
|
// As of Linux 4.12, only the "asymmetric" keyType defines type-specific |
|
// restrictions. |
|
// |
|
// See the full documentation at: |
|
// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html |
|
// http://man7.org/linux/man-pages/man2/keyctl.2.html |
|
func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error { |
|
if keyType == "" { |
|
return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid) |
|
} |
|
return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction) |
|
} |
|
|
|
//sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL |
|
//sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL |
|
|
|
func recvmsgRaw(fd int, iov []Iovec, oob []byte, flags int, rsa *RawSockaddrAny) (n, oobn int, recvflags int, err error) { |
|
var msg Msghdr |
|
msg.Name = (*byte)(unsafe.Pointer(rsa)) |
|
msg.Namelen = uint32(SizeofSockaddrAny) |
|
var dummy byte |
|
if len(oob) > 0 { |
|
if emptyIovecs(iov) { |
|
var sockType int |
|
sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) |
|
if err != nil { |
|
return |
|
} |
|
// receive at least one normal byte |
|
if sockType != SOCK_DGRAM { |
|
var iova [1]Iovec |
|
iova[0].Base = &dummy |
|
iova[0].SetLen(1) |
|
iov = iova[:] |
|
} |
|
} |
|
msg.Control = &oob[0] |
|
msg.SetControllen(len(oob)) |
|
} |
|
if len(iov) > 0 { |
|
msg.Iov = &iov[0] |
|
msg.SetIovlen(len(iov)) |
|
} |
|
if n, err = recvmsg(fd, &msg, flags); err != nil { |
|
return |
|
} |
|
oobn = int(msg.Controllen) |
|
recvflags = int(msg.Flags) |
|
return |
|
} |
|
|
|
func sendmsgN(fd int, iov []Iovec, oob []byte, ptr unsafe.Pointer, salen _Socklen, flags int) (n int, err error) { |
|
var msg Msghdr |
|
msg.Name = (*byte)(ptr) |
|
msg.Namelen = uint32(salen) |
|
var dummy byte |
|
var empty bool |
|
if len(oob) > 0 { |
|
empty = emptyIovecs(iov) |
|
if empty { |
|
var sockType int |
|
sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) |
|
if err != nil { |
|
return 0, err |
|
} |
|
// send at least one normal byte |
|
if sockType != SOCK_DGRAM { |
|
var iova [1]Iovec |
|
iova[0].Base = &dummy |
|
iova[0].SetLen(1) |
|
iov = iova[:] |
|
} |
|
} |
|
msg.Control = &oob[0] |
|
msg.SetControllen(len(oob)) |
|
} |
|
if len(iov) > 0 { |
|
msg.Iov = &iov[0] |
|
msg.SetIovlen(len(iov)) |
|
} |
|
if n, err = sendmsg(fd, &msg, flags); err != nil { |
|
return 0, err |
|
} |
|
if len(oob) > 0 && empty { |
|
n = 0 |
|
} |
|
return n, nil |
|
} |
|
|
|
// BindToDevice binds the socket associated with fd to device. |
|
func BindToDevice(fd int, device string) (err error) { |
|
return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device) |
|
} |
|
|
|
//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error) |
|
//sys ptracePtr(request int, pid int, addr uintptr, data unsafe.Pointer) (err error) = SYS_PTRACE |
|
|
|
func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) { |
|
// The peek requests are machine-size oriented, so we wrap it |
|
// to retrieve arbitrary-length data. |
|
|
|
// The ptrace syscall differs from glibc's ptrace. |
|
// Peeks returns the word in *data, not as the return value. |
|
|
|
var buf [SizeofPtr]byte |
|
|
|
// Leading edge. PEEKTEXT/PEEKDATA don't require aligned |
|
// access (PEEKUSER warns that it might), but if we don't |
|
// align our reads, we might straddle an unmapped page |
|
// boundary and not get the bytes leading up to the page |
|
// boundary. |
|
n := 0 |
|
if addr%SizeofPtr != 0 { |
|
err = ptracePtr(req, pid, addr-addr%SizeofPtr, unsafe.Pointer(&buf[0])) |
|
if err != nil { |
|
return 0, err |
|
} |
|
n += copy(out, buf[addr%SizeofPtr:]) |
|
out = out[n:] |
|
} |
|
|
|
// Remainder. |
|
for len(out) > 0 { |
|
// We use an internal buffer to guarantee alignment. |
|
// It's not documented if this is necessary, but we're paranoid. |
|
err = ptracePtr(req, pid, addr+uintptr(n), unsafe.Pointer(&buf[0])) |
|
if err != nil { |
|
return n, err |
|
} |
|
copied := copy(out, buf[0:]) |
|
n += copied |
|
out = out[copied:] |
|
} |
|
|
|
return n, nil |
|
} |
|
|
|
func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) { |
|
return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out) |
|
} |
|
|
|
func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) { |
|
return ptracePeek(PTRACE_PEEKDATA, pid, addr, out) |
|
} |
|
|
|
func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) { |
|
return ptracePeek(PTRACE_PEEKUSR, pid, addr, out) |
|
} |
|
|
|
func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) { |
|
// As for ptracePeek, we need to align our accesses to deal |
|
// with the possibility of straddling an invalid page. |
|
|
|
// Leading edge. |
|
n := 0 |
|
if addr%SizeofPtr != 0 { |
|
var buf [SizeofPtr]byte |
|
err = ptracePtr(peekReq, pid, addr-addr%SizeofPtr, unsafe.Pointer(&buf[0])) |
|
if err != nil { |
|
return 0, err |
|
} |
|
n += copy(buf[addr%SizeofPtr:], data) |
|
word := *((*uintptr)(unsafe.Pointer(&buf[0]))) |
|
err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word) |
|
if err != nil { |
|
return 0, err |
|
} |
|
data = data[n:] |
|
} |
|
|
|
// Interior. |
|
for len(data) > SizeofPtr { |
|
word := *((*uintptr)(unsafe.Pointer(&data[0]))) |
|
err = ptrace(pokeReq, pid, addr+uintptr(n), word) |
|
if err != nil { |
|
return n, err |
|
} |
|
n += SizeofPtr |
|
data = data[SizeofPtr:] |
|
} |
|
|
|
// Trailing edge. |
|
if len(data) > 0 { |
|
var buf [SizeofPtr]byte |
|
err = ptracePtr(peekReq, pid, addr+uintptr(n), unsafe.Pointer(&buf[0])) |
|
if err != nil { |
|
return n, err |
|
} |
|
copy(buf[0:], data) |
|
word := *((*uintptr)(unsafe.Pointer(&buf[0]))) |
|
err = ptrace(pokeReq, pid, addr+uintptr(n), word) |
|
if err != nil { |
|
return n, err |
|
} |
|
n += len(data) |
|
} |
|
|
|
return n, nil |
|
} |
|
|
|
func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) { |
|
return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data) |
|
} |
|
|
|
func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) { |
|
return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data) |
|
} |
|
|
|
func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) { |
|
return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data) |
|
} |
|
|
|
// elfNT_PRSTATUS is a copy of the debug/elf.NT_PRSTATUS constant so |
|
// x/sys/unix doesn't need to depend on debug/elf and thus |
|
// compress/zlib, debug/dwarf, and other packages. |
|
const elfNT_PRSTATUS = 1 |
|
|
|
func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) { |
|
var iov Iovec |
|
iov.Base = (*byte)(unsafe.Pointer(regsout)) |
|
iov.SetLen(int(unsafe.Sizeof(*regsout))) |
|
return ptracePtr(PTRACE_GETREGSET, pid, uintptr(elfNT_PRSTATUS), unsafe.Pointer(&iov)) |
|
} |
|
|
|
func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) { |
|
var iov Iovec |
|
iov.Base = (*byte)(unsafe.Pointer(regs)) |
|
iov.SetLen(int(unsafe.Sizeof(*regs))) |
|
return ptracePtr(PTRACE_SETREGSET, pid, uintptr(elfNT_PRSTATUS), unsafe.Pointer(&iov)) |
|
} |
|
|
|
func PtraceSetOptions(pid int, options int) (err error) { |
|
return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options)) |
|
} |
|
|
|
func PtraceGetEventMsg(pid int) (msg uint, err error) { |
|
var data _C_long |
|
err = ptracePtr(PTRACE_GETEVENTMSG, pid, 0, unsafe.Pointer(&data)) |
|
msg = uint(data) |
|
return |
|
} |
|
|
|
func PtraceCont(pid int, signal int) (err error) { |
|
return ptrace(PTRACE_CONT, pid, 0, uintptr(signal)) |
|
} |
|
|
|
func PtraceSyscall(pid int, signal int) (err error) { |
|
return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal)) |
|
} |
|
|
|
func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) } |
|
|
|
func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) } |
|
|
|
func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) } |
|
|
|
func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) } |
|
|
|
func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) } |
|
|
|
//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error) |
|
|
|
func Reboot(cmd int) (err error) { |
|
return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "") |
|
} |
|
|
|
func direntIno(buf []byte) (uint64, bool) { |
|
return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino)) |
|
} |
|
|
|
func direntReclen(buf []byte) (uint64, bool) { |
|
return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen)) |
|
} |
|
|
|
func direntNamlen(buf []byte) (uint64, bool) { |
|
reclen, ok := direntReclen(buf) |
|
if !ok { |
|
return 0, false |
|
} |
|
return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true |
|
} |
|
|
|
//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error) |
|
|
|
func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) { |
|
// Certain file systems get rather angry and EINVAL if you give |
|
// them an empty string of data, rather than NULL. |
|
if data == "" { |
|
return mount(source, target, fstype, flags, nil) |
|
} |
|
datap, err := BytePtrFromString(data) |
|
if err != nil { |
|
return err |
|
} |
|
return mount(source, target, fstype, flags, datap) |
|
} |
|
|
|
//sys mountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr, size uintptr) (err error) = SYS_MOUNT_SETATTR |
|
|
|
// MountSetattr is a wrapper for mount_setattr(2). |
|
// https://man7.org/linux/man-pages/man2/mount_setattr.2.html |
|
// |
|
// Requires kernel >= 5.12. |
|
func MountSetattr(dirfd int, pathname string, flags uint, attr *MountAttr) error { |
|
return mountSetattr(dirfd, pathname, flags, attr, unsafe.Sizeof(*attr)) |
|
} |
|
|
|
func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) { |
|
if raceenabled { |
|
raceReleaseMerge(unsafe.Pointer(&ioSync)) |
|
} |
|
return sendfile(outfd, infd, offset, count) |
|
} |
|
|
|
// Sendto |
|
// Recvfrom |
|
// Socketpair |
|
|
|
/* |
|
* Direct access |
|
*/ |
|
//sys Acct(path string) (err error) |
|
//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error) |
|
//sys Adjtimex(buf *Timex) (state int, err error) |
|
//sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error) |
|
//sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error) |
|
//sys Chdir(path string) (err error) |
|
//sys Chroot(path string) (err error) |
|
//sys ClockAdjtime(clockid int32, buf *Timex) (state int, err error) |
|
//sys ClockGetres(clockid int32, res *Timespec) (err error) |
|
//sys ClockGettime(clockid int32, time *Timespec) (err error) |
|
//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error) |
|
//sys Close(fd int) (err error) |
|
//sys CloseRange(first uint, last uint, flags uint) (err error) |
|
//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error) |
|
//sys DeleteModule(name string, flags int) (err error) |
|
//sys Dup(oldfd int) (fd int, err error) |
|
|
|
func Dup2(oldfd, newfd int) error { |
|
return Dup3(oldfd, newfd, 0) |
|
} |
|
|
|
//sys Dup3(oldfd int, newfd int, flags int) (err error) |
|
//sysnb EpollCreate1(flag int) (fd int, err error) |
|
//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error) |
|
//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2 |
|
//sys Exit(code int) = SYS_EXIT_GROUP |
|
//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error) |
|
//sys Fchdir(fd int) (err error) |
|
//sys Fchmod(fd int, mode uint32) (err error) |
|
//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error) |
|
//sys Fdatasync(fd int) (err error) |
|
//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error) |
|
//sys FinitModule(fd int, params string, flags int) (err error) |
|
//sys Flistxattr(fd int, dest []byte) (sz int, err error) |
|
//sys Flock(fd int, how int) (err error) |
|
//sys Fremovexattr(fd int, attr string) (err error) |
|
//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error) |
|
//sys Fsync(fd int) (err error) |
|
//sys Fsmount(fd int, flags int, mountAttrs int) (fsfd int, err error) |
|
//sys Fsopen(fsName string, flags int) (fd int, err error) |
|
//sys Fspick(dirfd int, pathName string, flags int) (fd int, err error) |
|
|
|
//sys fsconfig(fd int, cmd uint, key *byte, value *byte, aux int) (err error) |
|
|
|
func fsconfigCommon(fd int, cmd uint, key string, value *byte, aux int) (err error) { |
|
var keyp *byte |
|
if keyp, err = BytePtrFromString(key); err != nil { |
|
return |
|
} |
|
return fsconfig(fd, cmd, keyp, value, aux) |
|
} |
|
|
|
// FsconfigSetFlag is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_SET_FLAG. |
|
// |
|
// fd is the filesystem context to act upon. |
|
// key the parameter key to set. |
|
func FsconfigSetFlag(fd int, key string) (err error) { |
|
return fsconfigCommon(fd, FSCONFIG_SET_FLAG, key, nil, 0) |
|
} |
|
|
|
// FsconfigSetString is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_SET_STRING. |
|
// |
|
// fd is the filesystem context to act upon. |
|
// key the parameter key to set. |
|
// value is the parameter value to set. |
|
func FsconfigSetString(fd int, key string, value string) (err error) { |
|
var valuep *byte |
|
if valuep, err = BytePtrFromString(value); err != nil { |
|
return |
|
} |
|
return fsconfigCommon(fd, FSCONFIG_SET_STRING, key, valuep, 0) |
|
} |
|
|
|
// FsconfigSetBinary is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_SET_BINARY. |
|
// |
|
// fd is the filesystem context to act upon. |
|
// key the parameter key to set. |
|
// value is the parameter value to set. |
|
func FsconfigSetBinary(fd int, key string, value []byte) (err error) { |
|
if len(value) == 0 { |
|
return EINVAL |
|
} |
|
return fsconfigCommon(fd, FSCONFIG_SET_BINARY, key, &value[0], len(value)) |
|
} |
|
|
|
// FsconfigSetPath is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_SET_PATH. |
|
// |
|
// fd is the filesystem context to act upon. |
|
// key the parameter key to set. |
|
// path is a non-empty path for specified key. |
|
// atfd is a file descriptor at which to start lookup from or AT_FDCWD. |
|
func FsconfigSetPath(fd int, key string, path string, atfd int) (err error) { |
|
var valuep *byte |
|
if valuep, err = BytePtrFromString(path); err != nil { |
|
return |
|
} |
|
return fsconfigCommon(fd, FSCONFIG_SET_PATH, key, valuep, atfd) |
|
} |
|
|
|
// FsconfigSetPathEmpty is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_SET_PATH_EMPTY. The same as |
|
// FconfigSetPath but with AT_PATH_EMPTY implied. |
|
func FsconfigSetPathEmpty(fd int, key string, path string, atfd int) (err error) { |
|
var valuep *byte |
|
if valuep, err = BytePtrFromString(path); err != nil { |
|
return |
|
} |
|
return fsconfigCommon(fd, FSCONFIG_SET_PATH_EMPTY, key, valuep, atfd) |
|
} |
|
|
|
// FsconfigSetFd is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_SET_FD. |
|
// |
|
// fd is the filesystem context to act upon. |
|
// key the parameter key to set. |
|
// value is a file descriptor to be assigned to specified key. |
|
func FsconfigSetFd(fd int, key string, value int) (err error) { |
|
return fsconfigCommon(fd, FSCONFIG_SET_FD, key, nil, value) |
|
} |
|
|
|
// FsconfigCreate is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_CMD_CREATE. |
|
// |
|
// fd is the filesystem context to act upon. |
|
func FsconfigCreate(fd int) (err error) { |
|
return fsconfig(fd, FSCONFIG_CMD_CREATE, nil, nil, 0) |
|
} |
|
|
|
// FsconfigReconfigure is equivalent to fsconfig(2) called |
|
// with cmd == FSCONFIG_CMD_RECONFIGURE. |
|
// |
|
// fd is the filesystem context to act upon. |
|
func FsconfigReconfigure(fd int) (err error) { |
|
return fsconfig(fd, FSCONFIG_CMD_RECONFIGURE, nil, nil, 0) |
|
} |
|
|
|
//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64 |
|
//sysnb Getpgid(pid int) (pgid int, err error) |
|
|
|
func Getpgrp() (pid int) { |
|
pid, _ = Getpgid(0) |
|
return |
|
} |
|
|
|
//sysnb Getpid() (pid int) |
|
//sysnb Getppid() (ppid int) |
|
//sys Getpriority(which int, who int) (prio int, err error) |
|
//sys Getrandom(buf []byte, flags int) (n int, err error) |
|
//sysnb Getrusage(who int, rusage *Rusage) (err error) |
|
//sysnb Getsid(pid int) (sid int, err error) |
|
//sysnb Gettid() (tid int) |
|
//sys Getxattr(path string, attr string, dest []byte) (sz int, err error) |
|
//sys InitModule(moduleImage []byte, params string) (err error) |
|
//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error) |
|
//sysnb InotifyInit1(flags int) (fd int, err error) |
|
//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error) |
|
//sysnb Kill(pid int, sig syscall.Signal) (err error) |
|
//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG |
|
//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error) |
|
//sys Listxattr(path string, dest []byte) (sz int, err error) |
|
//sys Llistxattr(path string, dest []byte) (sz int, err error) |
|
//sys Lremovexattr(path string, attr string) (err error) |
|
//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error) |
|
//sys MemfdCreate(name string, flags int) (fd int, err error) |
|
//sys Mkdirat(dirfd int, path string, mode uint32) (err error) |
|
//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error) |
|
//sys MoveMount(fromDirfd int, fromPathName string, toDirfd int, toPathName string, flags int) (err error) |
|
//sys Nanosleep(time *Timespec, leftover *Timespec) (err error) |
|
//sys OpenTree(dfd int, fileName string, flags uint) (r int, err error) |
|
//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error) |
|
//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT |
|
//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error) |
|
//sys pselect6(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *sigset_argpack) (n int, err error) |
|
//sys read(fd int, p []byte) (n int, err error) |
|
//sys Removexattr(path string, attr string) (err error) |
|
//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error) |
|
//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error) |
|
//sys Setdomainname(p []byte) (err error) |
|
//sys Sethostname(p []byte) (err error) |
|
//sysnb Setpgid(pid int, pgid int) (err error) |
|
//sysnb Setsid() (pid int, err error) |
|
//sysnb Settimeofday(tv *Timeval) (err error) |
|
//sys Setns(fd int, nstype int) (err error) |
|
|
|
//go:linkname syscall_prlimit syscall.prlimit |
|
func syscall_prlimit(pid, resource int, newlimit, old *syscall.Rlimit) error |
|
|
|
func Prlimit(pid, resource int, newlimit, old *Rlimit) error { |
|
// Just call the syscall version, because as of Go 1.21 |
|
// it will affect starting a new process. |
|
return syscall_prlimit(pid, resource, (*syscall.Rlimit)(newlimit), (*syscall.Rlimit)(old)) |
|
} |
|
|
|
// PrctlRetInt performs a prctl operation specified by option and further |
|
// optional arguments arg2 through arg5 depending on option. It returns a |
|
// non-negative integer that is returned by the prctl syscall. |
|
func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) { |
|
ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0) |
|
if err != 0 { |
|
return 0, err |
|
} |
|
return int(ret), nil |
|
} |
|
|
|
func Setuid(uid int) (err error) { |
|
return syscall.Setuid(uid) |
|
} |
|
|
|
func Setgid(gid int) (err error) { |
|
return syscall.Setgid(gid) |
|
} |
|
|
|
func Setreuid(ruid, euid int) (err error) { |
|
return syscall.Setreuid(ruid, euid) |
|
} |
|
|
|
func Setregid(rgid, egid int) (err error) { |
|
return syscall.Setregid(rgid, egid) |
|
} |
|
|
|
func Setresuid(ruid, euid, suid int) (err error) { |
|
return syscall.Setresuid(ruid, euid, suid) |
|
} |
|
|
|
func Setresgid(rgid, egid, sgid int) (err error) { |
|
return syscall.Setresgid(rgid, egid, sgid) |
|
} |
|
|
|
// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set. |
|
// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability. |
|
// If the call fails due to other reasons, current fsgid will be returned. |
|
func SetfsgidRetGid(gid int) (int, error) { |
|
return setfsgid(gid) |
|
} |
|
|
|
// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set. |
|
// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability |
|
// If the call fails due to other reasons, current fsuid will be returned. |
|
func SetfsuidRetUid(uid int) (int, error) { |
|
return setfsuid(uid) |
|
} |
|
|
|
func Setfsgid(gid int) error { |
|
_, err := setfsgid(gid) |
|
return err |
|
} |
|
|
|
func Setfsuid(uid int) error { |
|
_, err := setfsuid(uid) |
|
return err |
|
} |
|
|
|
func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) { |
|
return signalfd(fd, sigmask, _C__NSIG/8, flags) |
|
} |
|
|
|
//sys Setpriority(which int, who int, prio int) (err error) |
|
//sys Setxattr(path string, attr string, data []byte, flags int) (err error) |
|
//sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4 |
|
//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error) |
|
//sys Sync() |
|
//sys Syncfs(fd int) (err error) |
|
//sysnb Sysinfo(info *Sysinfo_t) (err error) |
|
//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error) |
|
//sysnb TimerfdCreate(clockid int, flags int) (fd int, err error) |
|
//sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error) |
|
//sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error) |
|
//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error) |
|
//sysnb Times(tms *Tms) (ticks uintptr, err error) |
|
//sysnb Umask(mask int) (oldmask int) |
|
//sysnb Uname(buf *Utsname) (err error) |
|
//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2 |
|
//sys Unshare(flags int) (err error) |
|
//sys write(fd int, p []byte) (n int, err error) |
|
//sys exitThread(code int) (err error) = SYS_EXIT |
|
//sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV |
|
//sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV |
|
//sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV |
|
//sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV |
|
//sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2 |
|
//sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2 |
|
|
|
// minIovec is the size of the small initial allocation used by |
|
// Readv, Writev, etc. |
|
// |
|
// This small allocation gets stack allocated, which lets the |
|
// common use case of len(iovs) <= minIovs avoid more expensive |
|
// heap allocations. |
|
const minIovec = 8 |
|
|
|
// appendBytes converts bs to Iovecs and appends them to vecs. |
|
func appendBytes(vecs []Iovec, bs [][]byte) []Iovec { |
|
for _, b := range bs { |
|
var v Iovec |
|
v.SetLen(len(b)) |
|
if len(b) > 0 { |
|
v.Base = &b[0] |
|
} else { |
|
v.Base = (*byte)(unsafe.Pointer(&_zero)) |
|
} |
|
vecs = append(vecs, v) |
|
} |
|
return vecs |
|
} |
|
|
|
// offs2lohi splits offs into its low and high order bits. |
|
func offs2lohi(offs int64) (lo, hi uintptr) { |
|
const longBits = SizeofLong * 8 |
|
return uintptr(offs), uintptr(uint64(offs) >> (longBits - 1) >> 1) // two shifts to avoid false positive in vet |
|
} |
|
|
|
func Readv(fd int, iovs [][]byte) (n int, err error) { |
|
iovecs := make([]Iovec, 0, minIovec) |
|
iovecs = appendBytes(iovecs, iovs) |
|
n, err = readv(fd, iovecs) |
|
readvRacedetect(iovecs, n, err) |
|
return n, err |
|
} |
|
|
|
func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) { |
|
iovecs := make([]Iovec, 0, minIovec) |
|
iovecs = appendBytes(iovecs, iovs) |
|
lo, hi := offs2lohi(offset) |
|
n, err = preadv(fd, iovecs, lo, hi) |
|
readvRacedetect(iovecs, n, err) |
|
return n, err |
|
} |
|
|
|
func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) { |
|
iovecs := make([]Iovec, 0, minIovec) |
|
iovecs = appendBytes(iovecs, iovs) |
|
lo, hi := offs2lohi(offset) |
|
n, err = preadv2(fd, iovecs, lo, hi, flags) |
|
readvRacedetect(iovecs, n, err) |
|
return n, err |
|
} |
|
|
|
func readvRacedetect(iovecs []Iovec, n int, err error) { |
|
if !raceenabled { |
|
return |
|
} |
|
for i := 0; n > 0 && i < len(iovecs); i++ { |
|
m := int(iovecs[i].Len) |
|
if m > n { |
|
m = n |
|
} |
|
n -= m |
|
if m > 0 { |
|
raceWriteRange(unsafe.Pointer(iovecs[i].Base), m) |
|
} |
|
} |
|
if err == nil { |
|
raceAcquire(unsafe.Pointer(&ioSync)) |
|
} |
|
} |
|
|
|
func Writev(fd int, iovs [][]byte) (n int, err error) { |
|
iovecs := make([]Iovec, 0, minIovec) |
|
iovecs = appendBytes(iovecs, iovs) |
|
if raceenabled { |
|
raceReleaseMerge(unsafe.Pointer(&ioSync)) |
|
} |
|
n, err = writev(fd, iovecs) |
|
writevRacedetect(iovecs, n) |
|
return n, err |
|
} |
|
|
|
func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) { |
|
iovecs := make([]Iovec, 0, minIovec) |
|
iovecs = appendBytes(iovecs, iovs) |
|
if raceenabled { |
|
raceReleaseMerge(unsafe.Pointer(&ioSync)) |
|
} |
|
lo, hi := offs2lohi(offset) |
|
n, err = pwritev(fd, iovecs, lo, hi) |
|
writevRacedetect(iovecs, n) |
|
return n, err |
|
} |
|
|
|
func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) { |
|
iovecs := make([]Iovec, 0, minIovec) |
|
iovecs = appendBytes(iovecs, iovs) |
|
if raceenabled { |
|
raceReleaseMerge(unsafe.Pointer(&ioSync)) |
|
} |
|
lo, hi := offs2lohi(offset) |
|
n, err = pwritev2(fd, iovecs, lo, hi, flags) |
|
writevRacedetect(iovecs, n) |
|
return n, err |
|
} |
|
|
|
func writevRacedetect(iovecs []Iovec, n int) { |
|
if !raceenabled { |
|
return |
|
} |
|
for i := 0; n > 0 && i < len(iovecs); i++ { |
|
m := int(iovecs[i].Len) |
|
if m > n { |
|
m = n |
|
} |
|
n -= m |
|
if m > 0 { |
|
raceReadRange(unsafe.Pointer(iovecs[i].Base), m) |
|
} |
|
} |
|
} |
|
|
|
// mmap varies by architecture; see syscall_linux_*.go. |
|
//sys munmap(addr uintptr, length uintptr) (err error) |
|
//sys mremap(oldaddr uintptr, oldlength uintptr, newlength uintptr, flags int, newaddr uintptr) (xaddr uintptr, err error) |
|
//sys Madvise(b []byte, advice int) (err error) |
|
//sys Mprotect(b []byte, prot int) (err error) |
|
//sys Mlock(b []byte) (err error) |
|
//sys Mlockall(flags int) (err error) |
|
//sys Msync(b []byte, flags int) (err error) |
|
//sys Munlock(b []byte) (err error) |
|
//sys Munlockall() (err error) |
|
|
|
const ( |
|
mremapFixed = MREMAP_FIXED |
|
mremapDontunmap = MREMAP_DONTUNMAP |
|
mremapMaymove = MREMAP_MAYMOVE |
|
) |
|
|
|
// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd, |
|
// using the specified flags. |
|
func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) { |
|
var p unsafe.Pointer |
|
if len(iovs) > 0 { |
|
p = unsafe.Pointer(&iovs[0]) |
|
} |
|
|
|
n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0) |
|
if errno != 0 { |
|
return 0, syscall.Errno(errno) |
|
} |
|
|
|
return int(n), nil |
|
} |
|
|
|
func isGroupMember(gid int) bool { |
|
groups, err := Getgroups() |
|
if err != nil { |
|
return false |
|
} |
|
|
|
for _, g := range groups { |
|
if g == gid { |
|
return true |
|
} |
|
} |
|
return false |
|
} |
|
|
|
func isCapDacOverrideSet() bool { |
|
hdr := CapUserHeader{Version: LINUX_CAPABILITY_VERSION_3} |
|
data := [2]CapUserData{} |
|
err := Capget(&hdr, &data[0]) |
|
|
|
return err == nil && data[0].Effective&(1<<CAP_DAC_OVERRIDE) != 0 |
|
} |
|
|
|
//sys faccessat(dirfd int, path string, mode uint32) (err error) |
|
//sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error) |
|
|
|
func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) { |
|
if flags == 0 { |
|
return faccessat(dirfd, path, mode) |
|
} |
|
|
|
if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM { |
|
return err |
|
} |
|
|
|
// The Linux kernel faccessat system call does not take any flags. |
|
// The glibc faccessat implements the flags itself; see |
|
// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD |
|
// Because people naturally expect syscall.Faccessat to act |
|
// like C faccessat, we do the same. |
|
|
|
if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 { |
|
return EINVAL |
|
} |
|
|
|
var st Stat_t |
|
if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil { |
|
return err |
|
} |
|
|
|
mode &= 7 |
|
if mode == 0 { |
|
return nil |
|
} |
|
|
|
var uid int |
|
if flags&AT_EACCESS != 0 { |
|
uid = Geteuid() |
|
if uid != 0 && isCapDacOverrideSet() { |
|
// If CAP_DAC_OVERRIDE is set, file access check is |
|
// done by the kernel in the same way as for root |
|
// (see generic_permission() in the Linux sources). |
|
uid = 0 |
|
} |
|
} else { |
|
uid = Getuid() |
|
} |
|
|
|
if uid == 0 { |
|
if mode&1 == 0 { |
|
// Root can read and write any file. |
|
return nil |
|
} |
|
if st.Mode&0111 != 0 { |
|
// Root can execute any file that anybody can execute. |
|
return nil |
|
} |
|
return EACCES |
|
} |
|
|
|
var fmode uint32 |
|
if uint32(uid) == st.Uid { |
|
fmode = (st.Mode >> 6) & 7 |
|
} else { |
|
var gid int |
|
if flags&AT_EACCESS != 0 { |
|
gid = Getegid() |
|
} else { |
|
gid = Getgid() |
|
} |
|
|
|
if uint32(gid) == st.Gid || isGroupMember(int(st.Gid)) { |
|
fmode = (st.Mode >> 3) & 7 |
|
} else { |
|
fmode = st.Mode & 7 |
|
} |
|
} |
|
|
|
if fmode&mode == mode { |
|
return nil |
|
} |
|
|
|
return EACCES |
|
} |
|
|
|
//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT |
|
//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT |
|
|
|
// fileHandle is the argument to nameToHandleAt and openByHandleAt. We |
|
// originally tried to generate it via unix/linux/types.go with "type |
|
// fileHandle C.struct_file_handle" but that generated empty structs |
|
// for mips64 and mips64le. Instead, hard code it for now (it's the |
|
// same everywhere else) until the mips64 generator issue is fixed. |
|
type fileHandle struct { |
|
Bytes uint32 |
|
Type int32 |
|
} |
|
|
|
// FileHandle represents the C struct file_handle used by |
|
// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see |
|
// OpenByHandleAt). |
|
type FileHandle struct { |
|
*fileHandle |
|
} |
|
|
|
// NewFileHandle constructs a FileHandle. |
|
func NewFileHandle(handleType int32, handle []byte) FileHandle { |
|
const hdrSize = unsafe.Sizeof(fileHandle{}) |
|
buf := make([]byte, hdrSize+uintptr(len(handle))) |
|
copy(buf[hdrSize:], handle) |
|
fh := (*fileHandle)(unsafe.Pointer(&buf[0])) |
|
fh.Type = handleType |
|
fh.Bytes = uint32(len(handle)) |
|
return FileHandle{fh} |
|
} |
|
|
|
func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) } |
|
func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type } |
|
func (fh *FileHandle) Bytes() []byte { |
|
n := fh.Size() |
|
if n == 0 { |
|
return nil |
|
} |
|
return unsafe.Slice((*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type))+4)), n) |
|
} |
|
|
|
// NameToHandleAt wraps the name_to_handle_at system call; it obtains |
|
// a handle for a path name. |
|
func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) { |
|
var mid _C_int |
|
// Try first with a small buffer, assuming the handle will |
|
// only be 32 bytes. |
|
size := uint32(32 + unsafe.Sizeof(fileHandle{})) |
|
didResize := false |
|
for { |
|
buf := make([]byte, size) |
|
fh := (*fileHandle)(unsafe.Pointer(&buf[0])) |
|
fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{})) |
|
err = nameToHandleAt(dirfd, path, fh, &mid, flags) |
|
if err == EOVERFLOW { |
|
if didResize { |
|
// We shouldn't need to resize more than once |
|
return |
|
} |
|
didResize = true |
|
size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{})) |
|
continue |
|
} |
|
if err != nil { |
|
return |
|
} |
|
return FileHandle{fh}, int(mid), nil |
|
} |
|
} |
|
|
|
// OpenByHandleAt wraps the open_by_handle_at system call; it opens a |
|
// file via a handle as previously returned by NameToHandleAt. |
|
func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) { |
|
return openByHandleAt(mountFD, handle.fileHandle, flags) |
|
} |
|
|
|
// Klogset wraps the sys_syslog system call; it sets console_loglevel to |
|
// the value specified by arg and passes a dummy pointer to bufp. |
|
func Klogset(typ int, arg int) (err error) { |
|
var p unsafe.Pointer |
|
_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg)) |
|
if errno != 0 { |
|
return errnoErr(errno) |
|
} |
|
return nil |
|
} |
|
|
|
// RemoteIovec is Iovec with the pointer replaced with an integer. |
|
// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer |
|
// refers to a location in a different process' address space, which |
|
// would confuse the Go garbage collector. |
|
type RemoteIovec struct { |
|
Base uintptr |
|
Len int |
|
} |
|
|
|
//sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV |
|
//sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV |
|
|
|
//sys PidfdOpen(pid int, flags int) (fd int, err error) = SYS_PIDFD_OPEN |
|
//sys PidfdGetfd(pidfd int, targetfd int, flags int) (fd int, err error) = SYS_PIDFD_GETFD |
|
//sys PidfdSendSignal(pidfd int, sig Signal, info *Siginfo, flags int) (err error) = SYS_PIDFD_SEND_SIGNAL |
|
|
|
//sys shmat(id int, addr uintptr, flag int) (ret uintptr, err error) |
|
//sys shmctl(id int, cmd int, buf *SysvShmDesc) (result int, err error) |
|
//sys shmdt(addr uintptr) (err error) |
|
//sys shmget(key int, size int, flag int) (id int, err error) |
|
|
|
//sys getitimer(which int, currValue *Itimerval) (err error) |
|
//sys setitimer(which int, newValue *Itimerval, oldValue *Itimerval) (err error) |
|
|
|
// MakeItimerval creates an Itimerval from interval and value durations. |
|
func MakeItimerval(interval, value time.Duration) Itimerval { |
|
return Itimerval{ |
|
Interval: NsecToTimeval(interval.Nanoseconds()), |
|
Value: NsecToTimeval(value.Nanoseconds()), |
|
} |
|
} |
|
|
|
// A value which may be passed to the which parameter for Getitimer and |
|
// Setitimer. |
|
type ItimerWhich int |
|
|
|
// Possible which values for Getitimer and Setitimer. |
|
const ( |
|
ItimerReal ItimerWhich = ITIMER_REAL |
|
ItimerVirtual ItimerWhich = ITIMER_VIRTUAL |
|
ItimerProf ItimerWhich = ITIMER_PROF |
|
) |
|
|
|
// Getitimer wraps getitimer(2) to return the current value of the timer |
|
// specified by which. |
|
func Getitimer(which ItimerWhich) (Itimerval, error) { |
|
var it Itimerval |
|
if err := getitimer(int(which), &it); err != nil { |
|
return Itimerval{}, err |
|
} |
|
|
|
return it, nil |
|
} |
|
|
|
// Setitimer wraps setitimer(2) to arm or disarm the timer specified by which. |
|
// It returns the previous value of the timer. |
|
// |
|
// If the Itimerval argument is the zero value, the timer will be disarmed. |
|
func Setitimer(which ItimerWhich, it Itimerval) (Itimerval, error) { |
|
var prev Itimerval |
|
if err := setitimer(int(which), &it, &prev); err != nil { |
|
return Itimerval{}, err |
|
} |
|
|
|
return prev, nil |
|
} |
|
|
|
//sysnb rtSigprocmask(how int, set *Sigset_t, oldset *Sigset_t, sigsetsize uintptr) (err error) = SYS_RT_SIGPROCMASK |
|
|
|
func PthreadSigmask(how int, set, oldset *Sigset_t) error { |
|
if oldset != nil { |
|
// Explicitly clear in case Sigset_t is larger than _C__NSIG. |
|
*oldset = Sigset_t{} |
|
} |
|
return rtSigprocmask(how, set, oldset, _C__NSIG/8) |
|
} |
|
|
|
//sysnb getresuid(ruid *_C_int, euid *_C_int, suid *_C_int) |
|
//sysnb getresgid(rgid *_C_int, egid *_C_int, sgid *_C_int) |
|
|
|
func Getresuid() (ruid, euid, suid int) { |
|
var r, e, s _C_int |
|
getresuid(&r, &e, &s) |
|
return int(r), int(e), int(s) |
|
} |
|
|
|
func Getresgid() (rgid, egid, sgid int) { |
|
var r, e, s _C_int |
|
getresgid(&r, &e, &s) |
|
return int(r), int(e), int(s) |
|
} |
|
|
|
// Pselect is a wrapper around the Linux pselect6 system call. |
|
// This version does not modify the timeout argument. |
|
func Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) { |
|
// Per https://man7.org/linux/man-pages/man2/select.2.html#NOTES, |
|
// The Linux pselect6() system call modifies its timeout argument. |
|
// [Not modifying the argument] is the behavior required by POSIX.1-2001. |
|
var mutableTimeout *Timespec |
|
if timeout != nil { |
|
mutableTimeout = new(Timespec) |
|
*mutableTimeout = *timeout |
|
} |
|
|
|
// The final argument of the pselect6() system call is not a |
|
// sigset_t * pointer, but is instead a structure |
|
var kernelMask *sigset_argpack |
|
if sigmask != nil { |
|
wordBits := 32 << (^uintptr(0) >> 63) // see math.intSize |
|
|
|
// A sigset stores one bit per signal, |
|
// offset by 1 (because signal 0 does not exist). |
|
// So the number of words needed is ⌈__C_NSIG - 1 / wordBits⌉. |
|
sigsetWords := (_C__NSIG - 1 + wordBits - 1) / (wordBits) |
|
|
|
sigsetBytes := uintptr(sigsetWords * (wordBits / 8)) |
|
kernelMask = &sigset_argpack{ |
|
ss: sigmask, |
|
ssLen: sigsetBytes, |
|
} |
|
} |
|
|
|
return pselect6(nfd, r, w, e, mutableTimeout, kernelMask) |
|
} |
|
|
|
//sys schedSetattr(pid int, attr *SchedAttr, flags uint) (err error) |
|
//sys schedGetattr(pid int, attr *SchedAttr, size uint, flags uint) (err error) |
|
|
|
// SchedSetAttr is a wrapper for sched_setattr(2) syscall. |
|
// https://man7.org/linux/man-pages/man2/sched_setattr.2.html |
|
func SchedSetAttr(pid int, attr *SchedAttr, flags uint) error { |
|
if attr == nil { |
|
return EINVAL |
|
} |
|
attr.Size = SizeofSchedAttr |
|
return schedSetattr(pid, attr, flags) |
|
} |
|
|
|
// SchedGetAttr is a wrapper for sched_getattr(2) syscall. |
|
// https://man7.org/linux/man-pages/man2/sched_getattr.2.html |
|
func SchedGetAttr(pid int, flags uint) (*SchedAttr, error) { |
|
attr := &SchedAttr{} |
|
if err := schedGetattr(pid, attr, SizeofSchedAttr, flags); err != nil { |
|
return nil, err |
|
} |
|
return attr, nil |
|
} |
|
|
|
//sys Cachestat(fd uint, crange *CachestatRange, cstat *Cachestat_t, flags uint) (err error) |
|
//sys Mseal(b []byte, flags uint) (err error)
|
|
|