You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
8.0 KiB
238 lines
8.0 KiB
// Copyright 2016 The Snappy-Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
// +build !amd64,!arm64 appengine !gc noasm |
|
|
|
package snappy |
|
|
|
func load32(b []byte, i int) uint32 { |
|
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. |
|
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 |
|
} |
|
|
|
func load64(b []byte, i int) uint64 { |
|
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. |
|
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | |
|
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 |
|
} |
|
|
|
// emitLiteral writes a literal chunk and returns the number of bytes written. |
|
// |
|
// It assumes that: |
|
// dst is long enough to hold the encoded bytes |
|
// 1 <= len(lit) && len(lit) <= 65536 |
|
func emitLiteral(dst, lit []byte) int { |
|
i, n := 0, uint(len(lit)-1) |
|
switch { |
|
case n < 60: |
|
dst[0] = uint8(n)<<2 | tagLiteral |
|
i = 1 |
|
case n < 1<<8: |
|
dst[0] = 60<<2 | tagLiteral |
|
dst[1] = uint8(n) |
|
i = 2 |
|
default: |
|
dst[0] = 61<<2 | tagLiteral |
|
dst[1] = uint8(n) |
|
dst[2] = uint8(n >> 8) |
|
i = 3 |
|
} |
|
return i + copy(dst[i:], lit) |
|
} |
|
|
|
// emitCopy writes a copy chunk and returns the number of bytes written. |
|
// |
|
// It assumes that: |
|
// dst is long enough to hold the encoded bytes |
|
// 1 <= offset && offset <= 65535 |
|
// 4 <= length && length <= 65535 |
|
func emitCopy(dst []byte, offset, length int) int { |
|
i := 0 |
|
// The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The |
|
// threshold for this loop is a little higher (at 68 = 64 + 4), and the |
|
// length emitted down below is is a little lower (at 60 = 64 - 4), because |
|
// it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed |
|
// by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as |
|
// a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as |
|
// 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a |
|
// tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an |
|
// encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1. |
|
for length >= 68 { |
|
// Emit a length 64 copy, encoded as 3 bytes. |
|
dst[i+0] = 63<<2 | tagCopy2 |
|
dst[i+1] = uint8(offset) |
|
dst[i+2] = uint8(offset >> 8) |
|
i += 3 |
|
length -= 64 |
|
} |
|
if length > 64 { |
|
// Emit a length 60 copy, encoded as 3 bytes. |
|
dst[i+0] = 59<<2 | tagCopy2 |
|
dst[i+1] = uint8(offset) |
|
dst[i+2] = uint8(offset >> 8) |
|
i += 3 |
|
length -= 60 |
|
} |
|
if length >= 12 || offset >= 2048 { |
|
// Emit the remaining copy, encoded as 3 bytes. |
|
dst[i+0] = uint8(length-1)<<2 | tagCopy2 |
|
dst[i+1] = uint8(offset) |
|
dst[i+2] = uint8(offset >> 8) |
|
return i + 3 |
|
} |
|
// Emit the remaining copy, encoded as 2 bytes. |
|
dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1 |
|
dst[i+1] = uint8(offset) |
|
return i + 2 |
|
} |
|
|
|
// extendMatch returns the largest k such that k <= len(src) and that |
|
// src[i:i+k-j] and src[j:k] have the same contents. |
|
// |
|
// It assumes that: |
|
// 0 <= i && i < j && j <= len(src) |
|
func extendMatch(src []byte, i, j int) int { |
|
for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 { |
|
} |
|
return j |
|
} |
|
|
|
func hash(u, shift uint32) uint32 { |
|
return (u * 0x1e35a7bd) >> shift |
|
} |
|
|
|
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It |
|
// assumes that the varint-encoded length of the decompressed bytes has already |
|
// been written. |
|
// |
|
// It also assumes that: |
|
// len(dst) >= MaxEncodedLen(len(src)) && |
|
// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize |
|
func encodeBlock(dst, src []byte) (d int) { |
|
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive. |
|
// The table element type is uint16, as s < sLimit and sLimit < len(src) |
|
// and len(src) <= maxBlockSize and maxBlockSize == 65536. |
|
const ( |
|
maxTableSize = 1 << 14 |
|
// tableMask is redundant, but helps the compiler eliminate bounds |
|
// checks. |
|
tableMask = maxTableSize - 1 |
|
) |
|
shift := uint32(32 - 8) |
|
for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 { |
|
shift-- |
|
} |
|
// In Go, all array elements are zero-initialized, so there is no advantage |
|
// to a smaller tableSize per se. However, it matches the C++ algorithm, |
|
// and in the asm versions of this code, we can get away with zeroing only |
|
// the first tableSize elements. |
|
var table [maxTableSize]uint16 |
|
|
|
// sLimit is when to stop looking for offset/length copies. The inputMargin |
|
// lets us use a fast path for emitLiteral in the main loop, while we are |
|
// looking for copies. |
|
sLimit := len(src) - inputMargin |
|
|
|
// nextEmit is where in src the next emitLiteral should start from. |
|
nextEmit := 0 |
|
|
|
// The encoded form must start with a literal, as there are no previous |
|
// bytes to copy, so we start looking for hash matches at s == 1. |
|
s := 1 |
|
nextHash := hash(load32(src, s), shift) |
|
|
|
for { |
|
// Copied from the C++ snappy implementation: |
|
// |
|
// Heuristic match skipping: If 32 bytes are scanned with no matches |
|
// found, start looking only at every other byte. If 32 more bytes are |
|
// scanned (or skipped), look at every third byte, etc.. When a match |
|
// is found, immediately go back to looking at every byte. This is a |
|
// small loss (~5% performance, ~0.1% density) for compressible data |
|
// due to more bookkeeping, but for non-compressible data (such as |
|
// JPEG) it's a huge win since the compressor quickly "realizes" the |
|
// data is incompressible and doesn't bother looking for matches |
|
// everywhere. |
|
// |
|
// The "skip" variable keeps track of how many bytes there are since |
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives |
|
// the number of bytes to move ahead for each iteration. |
|
skip := 32 |
|
|
|
nextS := s |
|
candidate := 0 |
|
for { |
|
s = nextS |
|
bytesBetweenHashLookups := skip >> 5 |
|
nextS = s + bytesBetweenHashLookups |
|
skip += bytesBetweenHashLookups |
|
if nextS > sLimit { |
|
goto emitRemainder |
|
} |
|
candidate = int(table[nextHash&tableMask]) |
|
table[nextHash&tableMask] = uint16(s) |
|
nextHash = hash(load32(src, nextS), shift) |
|
if load32(src, s) == load32(src, candidate) { |
|
break |
|
} |
|
} |
|
|
|
// A 4-byte match has been found. We'll later see if more than 4 bytes |
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit |
|
// them as literal bytes. |
|
d += emitLiteral(dst[d:], src[nextEmit:s]) |
|
|
|
// Call emitCopy, and then see if another emitCopy could be our next |
|
// move. Repeat until we find no match for the input immediately after |
|
// what was consumed by the last emitCopy call. |
|
// |
|
// If we exit this loop normally then we need to call emitLiteral next, |
|
// though we don't yet know how big the literal will be. We handle that |
|
// by proceeding to the next iteration of the main loop. We also can |
|
// exit this loop via goto if we get close to exhausting the input. |
|
for { |
|
// Invariant: we have a 4-byte match at s, and no need to emit any |
|
// literal bytes prior to s. |
|
base := s |
|
|
|
// Extend the 4-byte match as long as possible. |
|
// |
|
// This is an inlined version of: |
|
// s = extendMatch(src, candidate+4, s+4) |
|
s += 4 |
|
for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 { |
|
} |
|
|
|
d += emitCopy(dst[d:], base-candidate, s-base) |
|
nextEmit = s |
|
if s >= sLimit { |
|
goto emitRemainder |
|
} |
|
|
|
// We could immediately start working at s now, but to improve |
|
// compression we first update the hash table at s-1 and at s. If |
|
// another emitCopy is not our next move, also calculate nextHash |
|
// at s+1. At least on GOARCH=amd64, these three hash calculations |
|
// are faster as one load64 call (with some shifts) instead of |
|
// three load32 calls. |
|
x := load64(src, s-1) |
|
prevHash := hash(uint32(x>>0), shift) |
|
table[prevHash&tableMask] = uint16(s - 1) |
|
currHash := hash(uint32(x>>8), shift) |
|
candidate = int(table[currHash&tableMask]) |
|
table[currHash&tableMask] = uint16(s) |
|
if uint32(x>>8) != load32(src, candidate) { |
|
nextHash = hash(uint32(x>>16), shift) |
|
s++ |
|
break |
|
} |
|
} |
|
} |
|
|
|
emitRemainder: |
|
if nextEmit < len(src) { |
|
d += emitLiteral(dst[d:], src[nextEmit:]) |
|
} |
|
return d |
|
}
|
|
|