You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
683 lines
17 KiB
683 lines
17 KiB
// Copyright 2018 Klaus Post. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License. |
|
|
|
package fse |
|
|
|
import ( |
|
"errors" |
|
"fmt" |
|
) |
|
|
|
// Compress the input bytes. Input must be < 2GB. |
|
// Provide a Scratch buffer to avoid memory allocations. |
|
// Note that the output is also kept in the scratch buffer. |
|
// If input is too hard to compress, ErrIncompressible is returned. |
|
// If input is a single byte value repeated ErrUseRLE is returned. |
|
func Compress(in []byte, s *Scratch) ([]byte, error) { |
|
if len(in) <= 1 { |
|
return nil, ErrIncompressible |
|
} |
|
if len(in) > (2<<30)-1 { |
|
return nil, errors.New("input too big, must be < 2GB") |
|
} |
|
s, err := s.prepare(in) |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
// Create histogram, if none was provided. |
|
maxCount := s.maxCount |
|
if maxCount == 0 { |
|
maxCount = s.countSimple(in) |
|
} |
|
// Reset for next run. |
|
s.clearCount = true |
|
s.maxCount = 0 |
|
if maxCount == len(in) { |
|
// One symbol, use RLE |
|
return nil, ErrUseRLE |
|
} |
|
if maxCount == 1 || maxCount < (len(in)>>7) { |
|
// Each symbol present maximum once or too well distributed. |
|
return nil, ErrIncompressible |
|
} |
|
s.optimalTableLog() |
|
err = s.normalizeCount() |
|
if err != nil { |
|
return nil, err |
|
} |
|
err = s.writeCount() |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
if false { |
|
err = s.validateNorm() |
|
if err != nil { |
|
return nil, err |
|
} |
|
} |
|
|
|
err = s.buildCTable() |
|
if err != nil { |
|
return nil, err |
|
} |
|
err = s.compress(in) |
|
if err != nil { |
|
return nil, err |
|
} |
|
s.Out = s.bw.out |
|
// Check if we compressed. |
|
if len(s.Out) >= len(in) { |
|
return nil, ErrIncompressible |
|
} |
|
return s.Out, nil |
|
} |
|
|
|
// cState contains the compression state of a stream. |
|
type cState struct { |
|
bw *bitWriter |
|
stateTable []uint16 |
|
state uint16 |
|
} |
|
|
|
// init will initialize the compression state to the first symbol of the stream. |
|
func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) { |
|
c.bw = bw |
|
c.stateTable = ct.stateTable |
|
|
|
nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 |
|
im := int32((nbBitsOut << 16) - first.deltaNbBits) |
|
lu := (im >> nbBitsOut) + first.deltaFindState |
|
c.state = c.stateTable[lu] |
|
} |
|
|
|
// encode the output symbol provided and write it to the bitstream. |
|
func (c *cState) encode(symbolTT symbolTransform) { |
|
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
|
dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState |
|
c.bw.addBits16NC(c.state, uint8(nbBitsOut)) |
|
c.state = c.stateTable[dstState] |
|
} |
|
|
|
// encode the output symbol provided and write it to the bitstream. |
|
func (c *cState) encodeZero(symbolTT symbolTransform) { |
|
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
|
dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState |
|
c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut)) |
|
c.state = c.stateTable[dstState] |
|
} |
|
|
|
// flush will write the tablelog to the output and flush the remaining full bytes. |
|
func (c *cState) flush(tableLog uint8) { |
|
c.bw.flush32() |
|
c.bw.addBits16NC(c.state, tableLog) |
|
c.bw.flush() |
|
} |
|
|
|
// compress is the main compression loop that will encode the input from the last byte to the first. |
|
func (s *Scratch) compress(src []byte) error { |
|
if len(src) <= 2 { |
|
return errors.New("compress: src too small") |
|
} |
|
tt := s.ct.symbolTT[:256] |
|
s.bw.reset(s.Out) |
|
|
|
// Our two states each encodes every second byte. |
|
// Last byte encoded (first byte decoded) will always be encoded by c1. |
|
var c1, c2 cState |
|
|
|
// Encode so remaining size is divisible by 4. |
|
ip := len(src) |
|
if ip&1 == 1 { |
|
c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]]) |
|
c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]]) |
|
c1.encodeZero(tt[src[ip-3]]) |
|
ip -= 3 |
|
} else { |
|
c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]]) |
|
c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]]) |
|
ip -= 2 |
|
} |
|
if ip&2 != 0 { |
|
c2.encodeZero(tt[src[ip-1]]) |
|
c1.encodeZero(tt[src[ip-2]]) |
|
ip -= 2 |
|
} |
|
|
|
// Main compression loop. |
|
switch { |
|
case !s.zeroBits && s.actualTableLog <= 8: |
|
// We can encode 4 symbols without requiring a flush. |
|
// We do not need to check if any output is 0 bits. |
|
for ip >= 4 { |
|
s.bw.flush32() |
|
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
|
c2.encode(tt[v0]) |
|
c1.encode(tt[v1]) |
|
c2.encode(tt[v2]) |
|
c1.encode(tt[v3]) |
|
ip -= 4 |
|
} |
|
case !s.zeroBits: |
|
// We do not need to check if any output is 0 bits. |
|
for ip >= 4 { |
|
s.bw.flush32() |
|
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
|
c2.encode(tt[v0]) |
|
c1.encode(tt[v1]) |
|
s.bw.flush32() |
|
c2.encode(tt[v2]) |
|
c1.encode(tt[v3]) |
|
ip -= 4 |
|
} |
|
case s.actualTableLog <= 8: |
|
// We can encode 4 symbols without requiring a flush |
|
for ip >= 4 { |
|
s.bw.flush32() |
|
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
|
c2.encodeZero(tt[v0]) |
|
c1.encodeZero(tt[v1]) |
|
c2.encodeZero(tt[v2]) |
|
c1.encodeZero(tt[v3]) |
|
ip -= 4 |
|
} |
|
default: |
|
for ip >= 4 { |
|
s.bw.flush32() |
|
v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
|
c2.encodeZero(tt[v0]) |
|
c1.encodeZero(tt[v1]) |
|
s.bw.flush32() |
|
c2.encodeZero(tt[v2]) |
|
c1.encodeZero(tt[v3]) |
|
ip -= 4 |
|
} |
|
} |
|
|
|
// Flush final state. |
|
// Used to initialize state when decoding. |
|
c2.flush(s.actualTableLog) |
|
c1.flush(s.actualTableLog) |
|
|
|
return s.bw.close() |
|
} |
|
|
|
// writeCount will write the normalized histogram count to header. |
|
// This is read back by readNCount. |
|
func (s *Scratch) writeCount() error { |
|
var ( |
|
tableLog = s.actualTableLog |
|
tableSize = 1 << tableLog |
|
previous0 bool |
|
charnum uint16 |
|
|
|
maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 |
|
|
|
// Write Table Size |
|
bitStream = uint32(tableLog - minTablelog) |
|
bitCount = uint(4) |
|
remaining = int16(tableSize + 1) /* +1 for extra accuracy */ |
|
threshold = int16(tableSize) |
|
nbBits = uint(tableLog + 1) |
|
) |
|
if cap(s.Out) < maxHeaderSize { |
|
s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize) |
|
} |
|
outP := uint(0) |
|
out := s.Out[:maxHeaderSize] |
|
|
|
// stops at 1 |
|
for remaining > 1 { |
|
if previous0 { |
|
start := charnum |
|
for s.norm[charnum] == 0 { |
|
charnum++ |
|
} |
|
for charnum >= start+24 { |
|
start += 24 |
|
bitStream += uint32(0xFFFF) << bitCount |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += 2 |
|
bitStream >>= 16 |
|
} |
|
for charnum >= start+3 { |
|
start += 3 |
|
bitStream += 3 << bitCount |
|
bitCount += 2 |
|
} |
|
bitStream += uint32(charnum-start) << bitCount |
|
bitCount += 2 |
|
if bitCount > 16 { |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += 2 |
|
bitStream >>= 16 |
|
bitCount -= 16 |
|
} |
|
} |
|
|
|
count := s.norm[charnum] |
|
charnum++ |
|
max := (2*threshold - 1) - remaining |
|
if count < 0 { |
|
remaining += count |
|
} else { |
|
remaining -= count |
|
} |
|
count++ // +1 for extra accuracy |
|
if count >= threshold { |
|
count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ |
|
} |
|
bitStream += uint32(count) << bitCount |
|
bitCount += nbBits |
|
if count < max { |
|
bitCount-- |
|
} |
|
|
|
previous0 = count == 1 |
|
if remaining < 1 { |
|
return errors.New("internal error: remaining<1") |
|
} |
|
for remaining < threshold { |
|
nbBits-- |
|
threshold >>= 1 |
|
} |
|
|
|
if bitCount > 16 { |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += 2 |
|
bitStream >>= 16 |
|
bitCount -= 16 |
|
} |
|
} |
|
|
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += (bitCount + 7) / 8 |
|
|
|
if charnum > s.symbolLen { |
|
return errors.New("internal error: charnum > s.symbolLen") |
|
} |
|
s.Out = out[:outP] |
|
return nil |
|
} |
|
|
|
// symbolTransform contains the state transform for a symbol. |
|
type symbolTransform struct { |
|
deltaFindState int32 |
|
deltaNbBits uint32 |
|
} |
|
|
|
// String prints values as a human readable string. |
|
func (s symbolTransform) String() string { |
|
return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState) |
|
} |
|
|
|
// cTable contains tables used for compression. |
|
type cTable struct { |
|
tableSymbol []byte |
|
stateTable []uint16 |
|
symbolTT []symbolTransform |
|
} |
|
|
|
// allocCtable will allocate tables needed for compression. |
|
// If existing tables a re big enough, they are simply re-used. |
|
func (s *Scratch) allocCtable() { |
|
tableSize := 1 << s.actualTableLog |
|
// get tableSymbol that is big enough. |
|
if cap(s.ct.tableSymbol) < tableSize { |
|
s.ct.tableSymbol = make([]byte, tableSize) |
|
} |
|
s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] |
|
|
|
ctSize := tableSize |
|
if cap(s.ct.stateTable) < ctSize { |
|
s.ct.stateTable = make([]uint16, ctSize) |
|
} |
|
s.ct.stateTable = s.ct.stateTable[:ctSize] |
|
|
|
if cap(s.ct.symbolTT) < 256 { |
|
s.ct.symbolTT = make([]symbolTransform, 256) |
|
} |
|
s.ct.symbolTT = s.ct.symbolTT[:256] |
|
} |
|
|
|
// buildCTable will populate the compression table so it is ready to be used. |
|
func (s *Scratch) buildCTable() error { |
|
tableSize := uint32(1 << s.actualTableLog) |
|
highThreshold := tableSize - 1 |
|
var cumul [maxSymbolValue + 2]int16 |
|
|
|
s.allocCtable() |
|
tableSymbol := s.ct.tableSymbol[:tableSize] |
|
// symbol start positions |
|
{ |
|
cumul[0] = 0 |
|
for ui, v := range s.norm[:s.symbolLen-1] { |
|
u := byte(ui) // one less than reference |
|
if v == -1 { |
|
// Low proba symbol |
|
cumul[u+1] = cumul[u] + 1 |
|
tableSymbol[highThreshold] = u |
|
highThreshold-- |
|
} else { |
|
cumul[u+1] = cumul[u] + v |
|
} |
|
} |
|
// Encode last symbol separately to avoid overflowing u |
|
u := int(s.symbolLen - 1) |
|
v := s.norm[s.symbolLen-1] |
|
if v == -1 { |
|
// Low proba symbol |
|
cumul[u+1] = cumul[u] + 1 |
|
tableSymbol[highThreshold] = byte(u) |
|
highThreshold-- |
|
} else { |
|
cumul[u+1] = cumul[u] + v |
|
} |
|
if uint32(cumul[s.symbolLen]) != tableSize { |
|
return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) |
|
} |
|
cumul[s.symbolLen] = int16(tableSize) + 1 |
|
} |
|
// Spread symbols |
|
s.zeroBits = false |
|
{ |
|
step := tableStep(tableSize) |
|
tableMask := tableSize - 1 |
|
var position uint32 |
|
// if any symbol > largeLimit, we may have 0 bits output. |
|
largeLimit := int16(1 << (s.actualTableLog - 1)) |
|
for ui, v := range s.norm[:s.symbolLen] { |
|
symbol := byte(ui) |
|
if v > largeLimit { |
|
s.zeroBits = true |
|
} |
|
for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { |
|
tableSymbol[position] = symbol |
|
position = (position + step) & tableMask |
|
for position > highThreshold { |
|
position = (position + step) & tableMask |
|
} /* Low proba area */ |
|
} |
|
} |
|
|
|
// Check if we have gone through all positions |
|
if position != 0 { |
|
return errors.New("position!=0") |
|
} |
|
} |
|
|
|
// Build table |
|
table := s.ct.stateTable |
|
{ |
|
tsi := int(tableSize) |
|
for u, v := range tableSymbol { |
|
// TableU16 : sorted by symbol order; gives next state value |
|
table[cumul[v]] = uint16(tsi + u) |
|
cumul[v]++ |
|
} |
|
} |
|
|
|
// Build Symbol Transformation Table |
|
{ |
|
total := int16(0) |
|
symbolTT := s.ct.symbolTT[:s.symbolLen] |
|
tableLog := s.actualTableLog |
|
tl := (uint32(tableLog) << 16) - (1 << tableLog) |
|
for i, v := range s.norm[:s.symbolLen] { |
|
switch v { |
|
case 0: |
|
case -1, 1: |
|
symbolTT[i].deltaNbBits = tl |
|
symbolTT[i].deltaFindState = int32(total - 1) |
|
total++ |
|
default: |
|
maxBitsOut := uint32(tableLog) - highBits(uint32(v-1)) |
|
minStatePlus := uint32(v) << maxBitsOut |
|
symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus |
|
symbolTT[i].deltaFindState = int32(total - v) |
|
total += v |
|
} |
|
} |
|
if total != int16(tableSize) { |
|
return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
// countSimple will create a simple histogram in s.count. |
|
// Returns the biggest count. |
|
// Does not update s.clearCount. |
|
func (s *Scratch) countSimple(in []byte) (max int) { |
|
for _, v := range in { |
|
s.count[v]++ |
|
} |
|
m := uint32(0) |
|
for i, v := range s.count[:] { |
|
if v > m { |
|
m = v |
|
} |
|
if v > 0 { |
|
s.symbolLen = uint16(i) + 1 |
|
} |
|
} |
|
return int(m) |
|
} |
|
|
|
// minTableLog provides the minimum logSize to safely represent a distribution. |
|
func (s *Scratch) minTableLog() uint8 { |
|
minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1 |
|
minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2 |
|
if minBitsSrc < minBitsSymbols { |
|
return uint8(minBitsSrc) |
|
} |
|
return uint8(minBitsSymbols) |
|
} |
|
|
|
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog |
|
func (s *Scratch) optimalTableLog() { |
|
tableLog := s.TableLog |
|
minBits := s.minTableLog() |
|
maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2 |
|
if maxBitsSrc < tableLog { |
|
// Accuracy can be reduced |
|
tableLog = maxBitsSrc |
|
} |
|
if minBits > tableLog { |
|
tableLog = minBits |
|
} |
|
// Need a minimum to safely represent all symbol values |
|
if tableLog < minTablelog { |
|
tableLog = minTablelog |
|
} |
|
if tableLog > maxTableLog { |
|
tableLog = maxTableLog |
|
} |
|
s.actualTableLog = tableLog |
|
} |
|
|
|
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} |
|
|
|
// normalizeCount will normalize the count of the symbols so |
|
// the total is equal to the table size. |
|
func (s *Scratch) normalizeCount() error { |
|
var ( |
|
tableLog = s.actualTableLog |
|
scale = 62 - uint64(tableLog) |
|
step = (1 << 62) / uint64(s.br.remain()) |
|
vStep = uint64(1) << (scale - 20) |
|
stillToDistribute = int16(1 << tableLog) |
|
largest int |
|
largestP int16 |
|
lowThreshold = (uint32)(s.br.remain() >> tableLog) |
|
) |
|
|
|
for i, cnt := range s.count[:s.symbolLen] { |
|
// already handled |
|
// if (count[s] == s.length) return 0; /* rle special case */ |
|
|
|
if cnt == 0 { |
|
s.norm[i] = 0 |
|
continue |
|
} |
|
if cnt <= lowThreshold { |
|
s.norm[i] = -1 |
|
stillToDistribute-- |
|
} else { |
|
proba := (int16)((uint64(cnt) * step) >> scale) |
|
if proba < 8 { |
|
restToBeat := vStep * uint64(rtbTable[proba]) |
|
v := uint64(cnt)*step - (uint64(proba) << scale) |
|
if v > restToBeat { |
|
proba++ |
|
} |
|
} |
|
if proba > largestP { |
|
largestP = proba |
|
largest = i |
|
} |
|
s.norm[i] = proba |
|
stillToDistribute -= proba |
|
} |
|
} |
|
|
|
if -stillToDistribute >= (s.norm[largest] >> 1) { |
|
// corner case, need another normalization method |
|
return s.normalizeCount2() |
|
} |
|
s.norm[largest] += stillToDistribute |
|
return nil |
|
} |
|
|
|
// Secondary normalization method. |
|
// To be used when primary method fails. |
|
func (s *Scratch) normalizeCount2() error { |
|
const notYetAssigned = -2 |
|
var ( |
|
distributed uint32 |
|
total = uint32(s.br.remain()) |
|
tableLog = s.actualTableLog |
|
lowThreshold = total >> tableLog |
|
lowOne = (total * 3) >> (tableLog + 1) |
|
) |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if cnt == 0 { |
|
s.norm[i] = 0 |
|
continue |
|
} |
|
if cnt <= lowThreshold { |
|
s.norm[i] = -1 |
|
distributed++ |
|
total -= cnt |
|
continue |
|
} |
|
if cnt <= lowOne { |
|
s.norm[i] = 1 |
|
distributed++ |
|
total -= cnt |
|
continue |
|
} |
|
s.norm[i] = notYetAssigned |
|
} |
|
toDistribute := (1 << tableLog) - distributed |
|
|
|
if (total / toDistribute) > lowOne { |
|
// risk of rounding to zero |
|
lowOne = (total * 3) / (toDistribute * 2) |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { |
|
s.norm[i] = 1 |
|
distributed++ |
|
total -= cnt |
|
continue |
|
} |
|
} |
|
toDistribute = (1 << tableLog) - distributed |
|
} |
|
if distributed == uint32(s.symbolLen)+1 { |
|
// all values are pretty poor; |
|
// probably incompressible data (should have already been detected); |
|
// find max, then give all remaining points to max |
|
var maxV int |
|
var maxC uint32 |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if cnt > maxC { |
|
maxV = i |
|
maxC = cnt |
|
} |
|
} |
|
s.norm[maxV] += int16(toDistribute) |
|
return nil |
|
} |
|
|
|
if total == 0 { |
|
// all of the symbols were low enough for the lowOne or lowThreshold |
|
for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { |
|
if s.norm[i] > 0 { |
|
toDistribute-- |
|
s.norm[i]++ |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
var ( |
|
vStepLog = 62 - uint64(tableLog) |
|
mid = uint64((1 << (vStepLog - 1)) - 1) |
|
rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining |
|
tmpTotal = mid |
|
) |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if s.norm[i] == notYetAssigned { |
|
var ( |
|
end = tmpTotal + uint64(cnt)*rStep |
|
sStart = uint32(tmpTotal >> vStepLog) |
|
sEnd = uint32(end >> vStepLog) |
|
weight = sEnd - sStart |
|
) |
|
if weight < 1 { |
|
return errors.New("weight < 1") |
|
} |
|
s.norm[i] = int16(weight) |
|
tmpTotal = end |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
// validateNorm validates the normalized histogram table. |
|
func (s *Scratch) validateNorm() (err error) { |
|
var total int |
|
for _, v := range s.norm[:s.symbolLen] { |
|
if v >= 0 { |
|
total += int(v) |
|
} else { |
|
total -= int(v) |
|
} |
|
} |
|
defer func() { |
|
if err == nil { |
|
return |
|
} |
|
fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) |
|
for i, v := range s.norm[:s.symbolLen] { |
|
fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) |
|
} |
|
}() |
|
if total != (1 << s.actualTableLog) { |
|
return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) |
|
} |
|
for i, v := range s.count[s.symbolLen:] { |
|
if v != 0 { |
|
return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) |
|
} |
|
} |
|
return nil |
|
}
|
|
|