You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
558 lines
16 KiB
558 lines
16 KiB
// Copyright 2019+ Klaus Post. All rights reserved. |
|
// License information can be found in the LICENSE file. |
|
// Based on work by Yann Collet, released under BSD License. |
|
|
|
package zstd |
|
|
|
import ( |
|
"bytes" |
|
"fmt" |
|
|
|
"github.com/klauspost/compress" |
|
) |
|
|
|
const ( |
|
bestLongTableBits = 22 // Bits used in the long match table |
|
bestLongTableSize = 1 << bestLongTableBits // Size of the table |
|
bestLongLen = 8 // Bytes used for table hash |
|
|
|
// Note: Increasing the short table bits or making the hash shorter |
|
// can actually lead to compression degradation since it will 'steal' more from the |
|
// long match table and match offsets are quite big. |
|
// This greatly depends on the type of input. |
|
bestShortTableBits = 18 // Bits used in the short match table |
|
bestShortTableSize = 1 << bestShortTableBits // Size of the table |
|
bestShortLen = 4 // Bytes used for table hash |
|
|
|
) |
|
|
|
type match struct { |
|
offset int32 |
|
s int32 |
|
length int32 |
|
rep int32 |
|
est int32 |
|
} |
|
|
|
const highScore = 25000 |
|
|
|
// estBits will estimate output bits from predefined tables. |
|
func (m *match) estBits(bitsPerByte int32) { |
|
mlc := mlCode(uint32(m.length - zstdMinMatch)) |
|
var ofc uint8 |
|
if m.rep < 0 { |
|
ofc = ofCode(uint32(m.s-m.offset) + 3) |
|
} else { |
|
ofc = ofCode(uint32(m.rep)) |
|
} |
|
// Cost, excluding |
|
ofTT, mlTT := fsePredefEnc[tableOffsets].ct.symbolTT[ofc], fsePredefEnc[tableMatchLengths].ct.symbolTT[mlc] |
|
|
|
// Add cost of match encoding... |
|
m.est = int32(ofTT.outBits + mlTT.outBits) |
|
m.est += int32(ofTT.deltaNbBits>>16 + mlTT.deltaNbBits>>16) |
|
// Subtract savings compared to literal encoding... |
|
m.est -= (m.length * bitsPerByte) >> 10 |
|
if m.est > 0 { |
|
// Unlikely gain.. |
|
m.length = 0 |
|
m.est = highScore |
|
} |
|
} |
|
|
|
// bestFastEncoder uses 2 tables, one for short matches (5 bytes) and one for long matches. |
|
// The long match table contains the previous entry with the same hash, |
|
// effectively making it a "chain" of length 2. |
|
// When we find a long match we choose between the two values and select the longest. |
|
// When we find a short match, after checking the long, we check if we can find a long at n+1 |
|
// and that it is longer (lazy matching). |
|
type bestFastEncoder struct { |
|
fastBase |
|
table [bestShortTableSize]prevEntry |
|
longTable [bestLongTableSize]prevEntry |
|
dictTable []prevEntry |
|
dictLongTable []prevEntry |
|
} |
|
|
|
// Encode improves compression... |
|
func (e *bestFastEncoder) Encode(blk *blockEnc, src []byte) { |
|
const ( |
|
// Input margin is the number of bytes we read (8) |
|
// and the maximum we will read ahead (2) |
|
inputMargin = 8 + 4 |
|
minNonLiteralBlockSize = 16 |
|
) |
|
|
|
// Protect against e.cur wraparound. |
|
for e.cur >= bufferReset { |
|
if len(e.hist) == 0 { |
|
for i := range e.table[:] { |
|
e.table[i] = prevEntry{} |
|
} |
|
for i := range e.longTable[:] { |
|
e.longTable[i] = prevEntry{} |
|
} |
|
e.cur = e.maxMatchOff |
|
break |
|
} |
|
// Shift down everything in the table that isn't already too far away. |
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff |
|
for i := range e.table[:] { |
|
v := e.table[i].offset |
|
v2 := e.table[i].prev |
|
if v < minOff { |
|
v = 0 |
|
v2 = 0 |
|
} else { |
|
v = v - e.cur + e.maxMatchOff |
|
if v2 < minOff { |
|
v2 = 0 |
|
} else { |
|
v2 = v2 - e.cur + e.maxMatchOff |
|
} |
|
} |
|
e.table[i] = prevEntry{ |
|
offset: v, |
|
prev: v2, |
|
} |
|
} |
|
for i := range e.longTable[:] { |
|
v := e.longTable[i].offset |
|
v2 := e.longTable[i].prev |
|
if v < minOff { |
|
v = 0 |
|
v2 = 0 |
|
} else { |
|
v = v - e.cur + e.maxMatchOff |
|
if v2 < minOff { |
|
v2 = 0 |
|
} else { |
|
v2 = v2 - e.cur + e.maxMatchOff |
|
} |
|
} |
|
e.longTable[i] = prevEntry{ |
|
offset: v, |
|
prev: v2, |
|
} |
|
} |
|
e.cur = e.maxMatchOff |
|
break |
|
} |
|
|
|
s := e.addBlock(src) |
|
blk.size = len(src) |
|
if len(src) < minNonLiteralBlockSize { |
|
blk.extraLits = len(src) |
|
blk.literals = blk.literals[:len(src)] |
|
copy(blk.literals, src) |
|
return |
|
} |
|
|
|
// Use this to estimate literal cost. |
|
// Scaled by 10 bits. |
|
bitsPerByte := int32((compress.ShannonEntropyBits(src) * 1024) / len(src)) |
|
// Huffman can never go < 1 bit/byte |
|
if bitsPerByte < 1024 { |
|
bitsPerByte = 1024 |
|
} |
|
|
|
// Override src |
|
src = e.hist |
|
sLimit := int32(len(src)) - inputMargin |
|
const kSearchStrength = 10 |
|
|
|
// nextEmit is where in src the next emitLiteral should start from. |
|
nextEmit := s |
|
cv := load6432(src, s) |
|
|
|
// Relative offsets |
|
offset1 := int32(blk.recentOffsets[0]) |
|
offset2 := int32(blk.recentOffsets[1]) |
|
offset3 := int32(blk.recentOffsets[2]) |
|
|
|
addLiterals := func(s *seq, until int32) { |
|
if until == nextEmit { |
|
return |
|
} |
|
blk.literals = append(blk.literals, src[nextEmit:until]...) |
|
s.litLen = uint32(until - nextEmit) |
|
} |
|
_ = addLiterals |
|
|
|
if debugEncoder { |
|
println("recent offsets:", blk.recentOffsets) |
|
} |
|
|
|
encodeLoop: |
|
for { |
|
// We allow the encoder to optionally turn off repeat offsets across blocks |
|
canRepeat := len(blk.sequences) > 2 |
|
|
|
if debugAsserts && canRepeat && offset1 == 0 { |
|
panic("offset0 was 0") |
|
} |
|
|
|
bestOf := func(a, b match) match { |
|
if a.est+(a.s-b.s)*bitsPerByte>>10 < b.est+(b.s-a.s)*bitsPerByte>>10 { |
|
return a |
|
} |
|
return b |
|
} |
|
const goodEnough = 100 |
|
|
|
nextHashL := hashLen(cv, bestLongTableBits, bestLongLen) |
|
nextHashS := hashLen(cv, bestShortTableBits, bestShortLen) |
|
candidateL := e.longTable[nextHashL] |
|
candidateS := e.table[nextHashS] |
|
|
|
matchAt := func(offset int32, s int32, first uint32, rep int32) match { |
|
if s-offset >= e.maxMatchOff || load3232(src, offset) != first { |
|
return match{s: s, est: highScore} |
|
} |
|
if debugAsserts { |
|
if !bytes.Equal(src[s:s+4], src[offset:offset+4]) { |
|
panic(fmt.Sprintf("first match mismatch: %v != %v, first: %08x", src[s:s+4], src[offset:offset+4], first)) |
|
} |
|
} |
|
m := match{offset: offset, s: s, length: 4 + e.matchlen(s+4, offset+4, src), rep: rep} |
|
m.estBits(bitsPerByte) |
|
return m |
|
} |
|
|
|
best := bestOf(matchAt(candidateL.offset-e.cur, s, uint32(cv), -1), matchAt(candidateL.prev-e.cur, s, uint32(cv), -1)) |
|
best = bestOf(best, matchAt(candidateS.offset-e.cur, s, uint32(cv), -1)) |
|
best = bestOf(best, matchAt(candidateS.prev-e.cur, s, uint32(cv), -1)) |
|
|
|
if canRepeat && best.length < goodEnough { |
|
cv32 := uint32(cv >> 8) |
|
spp := s + 1 |
|
best = bestOf(best, matchAt(spp-offset1, spp, cv32, 1)) |
|
best = bestOf(best, matchAt(spp-offset2, spp, cv32, 2)) |
|
best = bestOf(best, matchAt(spp-offset3, spp, cv32, 3)) |
|
if best.length > 0 { |
|
cv32 = uint32(cv >> 24) |
|
spp += 2 |
|
best = bestOf(best, matchAt(spp-offset1, spp, cv32, 1)) |
|
best = bestOf(best, matchAt(spp-offset2, spp, cv32, 2)) |
|
best = bestOf(best, matchAt(spp-offset3, spp, cv32, 3)) |
|
} |
|
} |
|
// Load next and check... |
|
e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: candidateL.offset} |
|
e.table[nextHashS] = prevEntry{offset: s + e.cur, prev: candidateS.offset} |
|
|
|
// Look far ahead, unless we have a really long match already... |
|
if best.length < goodEnough { |
|
// No match found, move forward on input, no need to check forward... |
|
if best.length < 4 { |
|
s += 1 + (s-nextEmit)>>(kSearchStrength-1) |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
continue |
|
} |
|
|
|
s++ |
|
candidateS = e.table[hashLen(cv>>8, bestShortTableBits, bestShortLen)] |
|
cv = load6432(src, s) |
|
cv2 := load6432(src, s+1) |
|
candidateL = e.longTable[hashLen(cv, bestLongTableBits, bestLongLen)] |
|
candidateL2 := e.longTable[hashLen(cv2, bestLongTableBits, bestLongLen)] |
|
|
|
// Short at s+1 |
|
best = bestOf(best, matchAt(candidateS.offset-e.cur, s, uint32(cv), -1)) |
|
// Long at s+1, s+2 |
|
best = bestOf(best, matchAt(candidateL.offset-e.cur, s, uint32(cv), -1)) |
|
best = bestOf(best, matchAt(candidateL.prev-e.cur, s, uint32(cv), -1)) |
|
best = bestOf(best, matchAt(candidateL2.offset-e.cur, s+1, uint32(cv2), -1)) |
|
best = bestOf(best, matchAt(candidateL2.prev-e.cur, s+1, uint32(cv2), -1)) |
|
if false { |
|
// Short at s+3. |
|
// Too often worse... |
|
best = bestOf(best, matchAt(e.table[hashLen(cv2>>8, bestShortTableBits, bestShortLen)].offset-e.cur, s+2, uint32(cv2>>8), -1)) |
|
} |
|
// See if we can find a better match by checking where the current best ends. |
|
// Use that offset to see if we can find a better full match. |
|
if sAt := best.s + best.length; sAt < sLimit { |
|
nextHashL := hashLen(load6432(src, sAt), bestLongTableBits, bestLongLen) |
|
candidateEnd := e.longTable[nextHashL] |
|
if pos := candidateEnd.offset - e.cur - best.length; pos >= 0 { |
|
bestEnd := bestOf(best, matchAt(pos, best.s, load3232(src, best.s), -1)) |
|
if pos := candidateEnd.prev - e.cur - best.length; pos >= 0 { |
|
bestEnd = bestOf(bestEnd, matchAt(pos, best.s, load3232(src, best.s), -1)) |
|
} |
|
best = bestEnd |
|
} |
|
} |
|
} |
|
|
|
if debugAsserts { |
|
if !bytes.Equal(src[best.s:best.s+best.length], src[best.offset:best.offset+best.length]) { |
|
panic(fmt.Sprintf("match mismatch: %v != %v", src[best.s:best.s+best.length], src[best.offset:best.offset+best.length])) |
|
} |
|
} |
|
|
|
// We have a match, we can store the forward value |
|
if best.rep > 0 { |
|
s = best.s |
|
var seq seq |
|
seq.matchLen = uint32(best.length - zstdMinMatch) |
|
|
|
// We might be able to match backwards. |
|
// Extend as long as we can. |
|
start := best.s |
|
// We end the search early, so we don't risk 0 literals |
|
// and have to do special offset treatment. |
|
startLimit := nextEmit + 1 |
|
|
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
repIndex := best.offset |
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { |
|
repIndex-- |
|
start-- |
|
seq.matchLen++ |
|
} |
|
addLiterals(&seq, start) |
|
|
|
// rep 0 |
|
seq.offset = uint32(best.rep) |
|
if debugSequences { |
|
println("repeat sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
|
|
// Index match start+1 (long) -> s - 1 |
|
index0 := s |
|
s = best.s + best.length |
|
|
|
nextEmit = s |
|
if s >= sLimit { |
|
if debugEncoder { |
|
println("repeat ended", s, best.length) |
|
|
|
} |
|
break encodeLoop |
|
} |
|
// Index skipped... |
|
off := index0 + e.cur |
|
for index0 < s-1 { |
|
cv0 := load6432(src, index0) |
|
h0 := hashLen(cv0, bestLongTableBits, bestLongLen) |
|
h1 := hashLen(cv0, bestShortTableBits, bestShortLen) |
|
e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} |
|
e.table[h1] = prevEntry{offset: off, prev: e.table[h1].offset} |
|
off++ |
|
index0++ |
|
} |
|
switch best.rep { |
|
case 2: |
|
offset1, offset2 = offset2, offset1 |
|
case 3: |
|
offset1, offset2, offset3 = offset3, offset1, offset2 |
|
} |
|
cv = load6432(src, s) |
|
continue |
|
} |
|
|
|
// A 4-byte match has been found. Update recent offsets. |
|
// We'll later see if more than 4 bytes. |
|
s = best.s |
|
t := best.offset |
|
offset1, offset2, offset3 = s-t, offset1, offset2 |
|
|
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
|
|
if debugAsserts && int(offset1) > len(src) { |
|
panic("invalid offset") |
|
} |
|
|
|
// Extend the n-byte match as long as possible. |
|
l := best.length |
|
|
|
// Extend backwards |
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { |
|
s-- |
|
t-- |
|
l++ |
|
} |
|
|
|
// Write our sequence |
|
var seq seq |
|
seq.litLen = uint32(s - nextEmit) |
|
seq.matchLen = uint32(l - zstdMinMatch) |
|
if seq.litLen > 0 { |
|
blk.literals = append(blk.literals, src[nextEmit:s]...) |
|
} |
|
seq.offset = uint32(s-t) + 3 |
|
s += l |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
nextEmit = s |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
|
|
// Index match start+1 (long) -> s - 1 |
|
index0 := s - l + 1 |
|
// every entry |
|
for index0 < s-1 { |
|
cv0 := load6432(src, index0) |
|
h0 := hashLen(cv0, bestLongTableBits, bestLongLen) |
|
h1 := hashLen(cv0, bestShortTableBits, bestShortLen) |
|
off := index0 + e.cur |
|
e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} |
|
e.table[h1] = prevEntry{offset: off, prev: e.table[h1].offset} |
|
index0++ |
|
} |
|
|
|
cv = load6432(src, s) |
|
if !canRepeat { |
|
continue |
|
} |
|
|
|
// Check offset 2 |
|
for { |
|
o2 := s - offset2 |
|
if load3232(src, o2) != uint32(cv) { |
|
// Do regular search |
|
break |
|
} |
|
|
|
// Store this, since we have it. |
|
nextHashS := hashLen(cv, bestShortTableBits, bestShortLen) |
|
nextHashL := hashLen(cv, bestLongTableBits, bestLongLen) |
|
|
|
// We have at least 4 byte match. |
|
// No need to check backwards. We come straight from a match |
|
l := 4 + e.matchlen(s+4, o2+4, src) |
|
|
|
e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: e.longTable[nextHashL].offset} |
|
e.table[nextHashS] = prevEntry{offset: s + e.cur, prev: e.table[nextHashS].offset} |
|
seq.matchLen = uint32(l) - zstdMinMatch |
|
seq.litLen = 0 |
|
|
|
// Since litlen is always 0, this is offset 1. |
|
seq.offset = 1 |
|
s += l |
|
nextEmit = s |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
|
|
// Swap offset 1 and 2. |
|
offset1, offset2 = offset2, offset1 |
|
if s >= sLimit { |
|
// Finished |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
} |
|
|
|
if int(nextEmit) < len(src) { |
|
blk.literals = append(blk.literals, src[nextEmit:]...) |
|
blk.extraLits = len(src) - int(nextEmit) |
|
} |
|
blk.recentOffsets[0] = uint32(offset1) |
|
blk.recentOffsets[1] = uint32(offset2) |
|
blk.recentOffsets[2] = uint32(offset3) |
|
if debugEncoder { |
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) |
|
} |
|
} |
|
|
|
// EncodeNoHist will encode a block with no history and no following blocks. |
|
// Most notable difference is that src will not be copied for history and |
|
// we do not need to check for max match length. |
|
func (e *bestFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) { |
|
e.ensureHist(len(src)) |
|
e.Encode(blk, src) |
|
} |
|
|
|
// Reset will reset and set a dictionary if not nil |
|
func (e *bestFastEncoder) Reset(d *dict, singleBlock bool) { |
|
e.resetBase(d, singleBlock) |
|
if d == nil { |
|
return |
|
} |
|
// Init or copy dict table |
|
if len(e.dictTable) != len(e.table) || d.id != e.lastDictID { |
|
if len(e.dictTable) != len(e.table) { |
|
e.dictTable = make([]prevEntry, len(e.table)) |
|
} |
|
end := int32(len(d.content)) - 8 + e.maxMatchOff |
|
for i := e.maxMatchOff; i < end; i += 4 { |
|
const hashLog = bestShortTableBits |
|
|
|
cv := load6432(d.content, i-e.maxMatchOff) |
|
nextHash := hashLen(cv, hashLog, bestShortLen) // 0 -> 4 |
|
nextHash1 := hashLen(cv>>8, hashLog, bestShortLen) // 1 -> 5 |
|
nextHash2 := hashLen(cv>>16, hashLog, bestShortLen) // 2 -> 6 |
|
nextHash3 := hashLen(cv>>24, hashLog, bestShortLen) // 3 -> 7 |
|
e.dictTable[nextHash] = prevEntry{ |
|
prev: e.dictTable[nextHash].offset, |
|
offset: i, |
|
} |
|
e.dictTable[nextHash1] = prevEntry{ |
|
prev: e.dictTable[nextHash1].offset, |
|
offset: i + 1, |
|
} |
|
e.dictTable[nextHash2] = prevEntry{ |
|
prev: e.dictTable[nextHash2].offset, |
|
offset: i + 2, |
|
} |
|
e.dictTable[nextHash3] = prevEntry{ |
|
prev: e.dictTable[nextHash3].offset, |
|
offset: i + 3, |
|
} |
|
} |
|
e.lastDictID = d.id |
|
} |
|
|
|
// Init or copy dict table |
|
if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID { |
|
if len(e.dictLongTable) != len(e.longTable) { |
|
e.dictLongTable = make([]prevEntry, len(e.longTable)) |
|
} |
|
if len(d.content) >= 8 { |
|
cv := load6432(d.content, 0) |
|
h := hashLen(cv, bestLongTableBits, bestLongLen) |
|
e.dictLongTable[h] = prevEntry{ |
|
offset: e.maxMatchOff, |
|
prev: e.dictLongTable[h].offset, |
|
} |
|
|
|
end := int32(len(d.content)) - 8 + e.maxMatchOff |
|
off := 8 // First to read |
|
for i := e.maxMatchOff + 1; i < end; i++ { |
|
cv = cv>>8 | (uint64(d.content[off]) << 56) |
|
h := hashLen(cv, bestLongTableBits, bestLongLen) |
|
e.dictLongTable[h] = prevEntry{ |
|
offset: i, |
|
prev: e.dictLongTable[h].offset, |
|
} |
|
off++ |
|
} |
|
} |
|
e.lastDictID = d.id |
|
} |
|
// Reset table to initial state |
|
copy(e.longTable[:], e.dictLongTable) |
|
|
|
e.cur = e.maxMatchOff |
|
// Reset table to initial state |
|
copy(e.table[:], e.dictTable) |
|
}
|
|
|