You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1124 lines
30 KiB
1124 lines
30 KiB
// Copyright 2019+ Klaus Post. All rights reserved. |
|
// License information can be found in the LICENSE file. |
|
// Based on work by Yann Collet, released under BSD License. |
|
|
|
package zstd |
|
|
|
import "fmt" |
|
|
|
const ( |
|
dFastLongTableBits = 17 // Bits used in the long match table |
|
dFastLongTableSize = 1 << dFastLongTableBits // Size of the table |
|
dFastLongTableMask = dFastLongTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. |
|
dFastLongLen = 8 // Bytes used for table hash |
|
|
|
dLongTableShardCnt = 1 << (dFastLongTableBits - dictShardBits) // Number of shards in the table |
|
dLongTableShardSize = dFastLongTableSize / tableShardCnt // Size of an individual shard |
|
|
|
dFastShortTableBits = tableBits // Bits used in the short match table |
|
dFastShortTableSize = 1 << dFastShortTableBits // Size of the table |
|
dFastShortTableMask = dFastShortTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. |
|
dFastShortLen = 5 // Bytes used for table hash |
|
|
|
) |
|
|
|
type doubleFastEncoder struct { |
|
fastEncoder |
|
longTable [dFastLongTableSize]tableEntry |
|
} |
|
|
|
type doubleFastEncoderDict struct { |
|
fastEncoderDict |
|
longTable [dFastLongTableSize]tableEntry |
|
dictLongTable []tableEntry |
|
longTableShardDirty [dLongTableShardCnt]bool |
|
} |
|
|
|
// Encode mimmics functionality in zstd_dfast.c |
|
func (e *doubleFastEncoder) Encode(blk *blockEnc, src []byte) { |
|
const ( |
|
// Input margin is the number of bytes we read (8) |
|
// and the maximum we will read ahead (2) |
|
inputMargin = 8 + 2 |
|
minNonLiteralBlockSize = 16 |
|
) |
|
|
|
// Protect against e.cur wraparound. |
|
for e.cur >= bufferReset { |
|
if len(e.hist) == 0 { |
|
for i := range e.table[:] { |
|
e.table[i] = tableEntry{} |
|
} |
|
for i := range e.longTable[:] { |
|
e.longTable[i] = tableEntry{} |
|
} |
|
e.cur = e.maxMatchOff |
|
break |
|
} |
|
// Shift down everything in the table that isn't already too far away. |
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff |
|
for i := range e.table[:] { |
|
v := e.table[i].offset |
|
if v < minOff { |
|
v = 0 |
|
} else { |
|
v = v - e.cur + e.maxMatchOff |
|
} |
|
e.table[i].offset = v |
|
} |
|
for i := range e.longTable[:] { |
|
v := e.longTable[i].offset |
|
if v < minOff { |
|
v = 0 |
|
} else { |
|
v = v - e.cur + e.maxMatchOff |
|
} |
|
e.longTable[i].offset = v |
|
} |
|
e.cur = e.maxMatchOff |
|
break |
|
} |
|
|
|
s := e.addBlock(src) |
|
blk.size = len(src) |
|
if len(src) < minNonLiteralBlockSize { |
|
blk.extraLits = len(src) |
|
blk.literals = blk.literals[:len(src)] |
|
copy(blk.literals, src) |
|
return |
|
} |
|
|
|
// Override src |
|
src = e.hist |
|
sLimit := int32(len(src)) - inputMargin |
|
// stepSize is the number of bytes to skip on every main loop iteration. |
|
// It should be >= 1. |
|
const stepSize = 1 |
|
|
|
const kSearchStrength = 8 |
|
|
|
// nextEmit is where in src the next emitLiteral should start from. |
|
nextEmit := s |
|
cv := load6432(src, s) |
|
|
|
// Relative offsets |
|
offset1 := int32(blk.recentOffsets[0]) |
|
offset2 := int32(blk.recentOffsets[1]) |
|
|
|
addLiterals := func(s *seq, until int32) { |
|
if until == nextEmit { |
|
return |
|
} |
|
blk.literals = append(blk.literals, src[nextEmit:until]...) |
|
s.litLen = uint32(until - nextEmit) |
|
} |
|
if debugEncoder { |
|
println("recent offsets:", blk.recentOffsets) |
|
} |
|
|
|
encodeLoop: |
|
for { |
|
var t int32 |
|
// We allow the encoder to optionally turn off repeat offsets across blocks |
|
canRepeat := len(blk.sequences) > 2 |
|
|
|
for { |
|
if debugAsserts && canRepeat && offset1 == 0 { |
|
panic("offset0 was 0") |
|
} |
|
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) |
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
candidateL := e.longTable[nextHashL] |
|
candidateS := e.table[nextHashS] |
|
|
|
const repOff = 1 |
|
repIndex := s - offset1 + repOff |
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)} |
|
e.longTable[nextHashL] = entry |
|
e.table[nextHashS] = entry |
|
|
|
if canRepeat { |
|
if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { |
|
// Consider history as well. |
|
var seq seq |
|
lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) |
|
|
|
seq.matchLen = uint32(lenght - zstdMinMatch) |
|
|
|
// We might be able to match backwards. |
|
// Extend as long as we can. |
|
start := s + repOff |
|
// We end the search early, so we don't risk 0 literals |
|
// and have to do special offset treatment. |
|
startLimit := nextEmit + 1 |
|
|
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { |
|
repIndex-- |
|
start-- |
|
seq.matchLen++ |
|
} |
|
addLiterals(&seq, start) |
|
|
|
// rep 0 |
|
seq.offset = 1 |
|
if debugSequences { |
|
println("repeat sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
s += lenght + repOff |
|
nextEmit = s |
|
if s >= sLimit { |
|
if debugEncoder { |
|
println("repeat ended", s, lenght) |
|
|
|
} |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
continue |
|
} |
|
} |
|
// Find the offsets of our two matches. |
|
coffsetL := s - (candidateL.offset - e.cur) |
|
coffsetS := s - (candidateS.offset - e.cur) |
|
|
|
// Check if we have a long match. |
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { |
|
// Found a long match, likely at least 8 bytes. |
|
// Reference encoder checks all 8 bytes, we only check 4, |
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough. |
|
t = candidateL.offset - e.cur |
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
if debugAsserts && s-t > e.maxMatchOff { |
|
panic("s - t >e.maxMatchOff") |
|
} |
|
if debugMatches { |
|
println("long match") |
|
} |
|
break |
|
} |
|
|
|
// Check if we have a short match. |
|
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { |
|
// found a regular match |
|
// See if we can find a long match at s+1 |
|
const checkAt = 1 |
|
cv := load6432(src, s+checkAt) |
|
nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
candidateL = e.longTable[nextHashL] |
|
coffsetL = s - (candidateL.offset - e.cur) + checkAt |
|
|
|
// We can store it, since we have at least a 4 byte match. |
|
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} |
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { |
|
// Found a long match, likely at least 8 bytes. |
|
// Reference encoder checks all 8 bytes, we only check 4, |
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough. |
|
t = candidateL.offset - e.cur |
|
s += checkAt |
|
if debugMatches { |
|
println("long match (after short)") |
|
} |
|
break |
|
} |
|
|
|
t = candidateS.offset - e.cur |
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
if debugAsserts && s-t > e.maxMatchOff { |
|
panic("s - t >e.maxMatchOff") |
|
} |
|
if debugAsserts && t < 0 { |
|
panic("t<0") |
|
} |
|
if debugMatches { |
|
println("short match") |
|
} |
|
break |
|
} |
|
|
|
// No match found, move forward in input. |
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
|
|
// A 4-byte match has been found. Update recent offsets. |
|
// We'll later see if more than 4 bytes. |
|
offset2 = offset1 |
|
offset1 = s - t |
|
|
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
|
|
if debugAsserts && canRepeat && int(offset1) > len(src) { |
|
panic("invalid offset") |
|
} |
|
|
|
// Extend the 4-byte match as long as possible. |
|
l := e.matchlen(s+4, t+4, src) + 4 |
|
|
|
// Extend backwards |
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { |
|
s-- |
|
t-- |
|
l++ |
|
} |
|
|
|
// Write our sequence |
|
var seq seq |
|
seq.litLen = uint32(s - nextEmit) |
|
seq.matchLen = uint32(l - zstdMinMatch) |
|
if seq.litLen > 0 { |
|
blk.literals = append(blk.literals, src[nextEmit:s]...) |
|
} |
|
seq.offset = uint32(s-t) + 3 |
|
s += l |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
nextEmit = s |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
|
|
// Index match start+1 (long) and start+2 (short) |
|
index0 := s - l + 1 |
|
// Index match end-2 (long) and end-1 (short) |
|
index1 := s - 2 |
|
|
|
cv0 := load6432(src, index0) |
|
cv1 := load6432(src, index1) |
|
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} |
|
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} |
|
e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0 |
|
e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1 |
|
cv0 >>= 8 |
|
cv1 >>= 8 |
|
te0.offset++ |
|
te1.offset++ |
|
te0.val = uint32(cv0) |
|
te1.val = uint32(cv1) |
|
e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0 |
|
e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1 |
|
|
|
cv = load6432(src, s) |
|
|
|
if !canRepeat { |
|
continue |
|
} |
|
|
|
// Check offset 2 |
|
for { |
|
o2 := s - offset2 |
|
if load3232(src, o2) != uint32(cv) { |
|
// Do regular search |
|
break |
|
} |
|
|
|
// Store this, since we have it. |
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) |
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
|
|
// We have at least 4 byte match. |
|
// No need to check backwards. We come straight from a match |
|
l := 4 + e.matchlen(s+4, o2+4, src) |
|
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)} |
|
e.longTable[nextHashL] = entry |
|
e.table[nextHashS] = entry |
|
seq.matchLen = uint32(l) - zstdMinMatch |
|
seq.litLen = 0 |
|
|
|
// Since litlen is always 0, this is offset 1. |
|
seq.offset = 1 |
|
s += l |
|
nextEmit = s |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
|
|
// Swap offset 1 and 2. |
|
offset1, offset2 = offset2, offset1 |
|
if s >= sLimit { |
|
// Finished |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
} |
|
|
|
if int(nextEmit) < len(src) { |
|
blk.literals = append(blk.literals, src[nextEmit:]...) |
|
blk.extraLits = len(src) - int(nextEmit) |
|
} |
|
blk.recentOffsets[0] = uint32(offset1) |
|
blk.recentOffsets[1] = uint32(offset2) |
|
if debugEncoder { |
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) |
|
} |
|
} |
|
|
|
// EncodeNoHist will encode a block with no history and no following blocks. |
|
// Most notable difference is that src will not be copied for history and |
|
// we do not need to check for max match length. |
|
func (e *doubleFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) { |
|
const ( |
|
// Input margin is the number of bytes we read (8) |
|
// and the maximum we will read ahead (2) |
|
inputMargin = 8 + 2 |
|
minNonLiteralBlockSize = 16 |
|
) |
|
|
|
// Protect against e.cur wraparound. |
|
if e.cur >= bufferReset { |
|
for i := range e.table[:] { |
|
e.table[i] = tableEntry{} |
|
} |
|
for i := range e.longTable[:] { |
|
e.longTable[i] = tableEntry{} |
|
} |
|
e.cur = e.maxMatchOff |
|
} |
|
|
|
s := int32(0) |
|
blk.size = len(src) |
|
if len(src) < minNonLiteralBlockSize { |
|
blk.extraLits = len(src) |
|
blk.literals = blk.literals[:len(src)] |
|
copy(blk.literals, src) |
|
return |
|
} |
|
|
|
// Override src |
|
sLimit := int32(len(src)) - inputMargin |
|
// stepSize is the number of bytes to skip on every main loop iteration. |
|
// It should be >= 1. |
|
const stepSize = 1 |
|
|
|
const kSearchStrength = 8 |
|
|
|
// nextEmit is where in src the next emitLiteral should start from. |
|
nextEmit := s |
|
cv := load6432(src, s) |
|
|
|
// Relative offsets |
|
offset1 := int32(blk.recentOffsets[0]) |
|
offset2 := int32(blk.recentOffsets[1]) |
|
|
|
addLiterals := func(s *seq, until int32) { |
|
if until == nextEmit { |
|
return |
|
} |
|
blk.literals = append(blk.literals, src[nextEmit:until]...) |
|
s.litLen = uint32(until - nextEmit) |
|
} |
|
if debugEncoder { |
|
println("recent offsets:", blk.recentOffsets) |
|
} |
|
|
|
encodeLoop: |
|
for { |
|
var t int32 |
|
for { |
|
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) |
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
candidateL := e.longTable[nextHashL] |
|
candidateS := e.table[nextHashS] |
|
|
|
const repOff = 1 |
|
repIndex := s - offset1 + repOff |
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)} |
|
e.longTable[nextHashL] = entry |
|
e.table[nextHashS] = entry |
|
|
|
if len(blk.sequences) > 2 { |
|
if load3232(src, repIndex) == uint32(cv>>(repOff*8)) { |
|
// Consider history as well. |
|
var seq seq |
|
//length := 4 + e.matchlen(s+4+repOff, repIndex+4, src) |
|
length := 4 + int32(matchLen(src[s+4+repOff:], src[repIndex+4:])) |
|
|
|
seq.matchLen = uint32(length - zstdMinMatch) |
|
|
|
// We might be able to match backwards. |
|
// Extend as long as we can. |
|
start := s + repOff |
|
// We end the search early, so we don't risk 0 literals |
|
// and have to do special offset treatment. |
|
startLimit := nextEmit + 1 |
|
|
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] { |
|
repIndex-- |
|
start-- |
|
seq.matchLen++ |
|
} |
|
addLiterals(&seq, start) |
|
|
|
// rep 0 |
|
seq.offset = 1 |
|
if debugSequences { |
|
println("repeat sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
s += length + repOff |
|
nextEmit = s |
|
if s >= sLimit { |
|
if debugEncoder { |
|
println("repeat ended", s, length) |
|
|
|
} |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
continue |
|
} |
|
} |
|
// Find the offsets of our two matches. |
|
coffsetL := s - (candidateL.offset - e.cur) |
|
coffsetS := s - (candidateS.offset - e.cur) |
|
|
|
// Check if we have a long match. |
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { |
|
// Found a long match, likely at least 8 bytes. |
|
// Reference encoder checks all 8 bytes, we only check 4, |
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough. |
|
t = candidateL.offset - e.cur |
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d). cur: %d", s, t, e.cur)) |
|
} |
|
if debugAsserts && s-t > e.maxMatchOff { |
|
panic("s - t >e.maxMatchOff") |
|
} |
|
if debugMatches { |
|
println("long match") |
|
} |
|
break |
|
} |
|
|
|
// Check if we have a short match. |
|
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { |
|
// found a regular match |
|
// See if we can find a long match at s+1 |
|
const checkAt = 1 |
|
cv := load6432(src, s+checkAt) |
|
nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
candidateL = e.longTable[nextHashL] |
|
coffsetL = s - (candidateL.offset - e.cur) + checkAt |
|
|
|
// We can store it, since we have at least a 4 byte match. |
|
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} |
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { |
|
// Found a long match, likely at least 8 bytes. |
|
// Reference encoder checks all 8 bytes, we only check 4, |
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough. |
|
t = candidateL.offset - e.cur |
|
s += checkAt |
|
if debugMatches { |
|
println("long match (after short)") |
|
} |
|
break |
|
} |
|
|
|
t = candidateS.offset - e.cur |
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
if debugAsserts && s-t > e.maxMatchOff { |
|
panic("s - t >e.maxMatchOff") |
|
} |
|
if debugAsserts && t < 0 { |
|
panic("t<0") |
|
} |
|
if debugMatches { |
|
println("short match") |
|
} |
|
break |
|
} |
|
|
|
// No match found, move forward in input. |
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
|
|
// A 4-byte match has been found. Update recent offsets. |
|
// We'll later see if more than 4 bytes. |
|
offset2 = offset1 |
|
offset1 = s - t |
|
|
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
|
|
// Extend the 4-byte match as long as possible. |
|
//l := e.matchlen(s+4, t+4, src) + 4 |
|
l := int32(matchLen(src[s+4:], src[t+4:])) + 4 |
|
|
|
// Extend backwards |
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] { |
|
s-- |
|
t-- |
|
l++ |
|
} |
|
|
|
// Write our sequence |
|
var seq seq |
|
seq.litLen = uint32(s - nextEmit) |
|
seq.matchLen = uint32(l - zstdMinMatch) |
|
if seq.litLen > 0 { |
|
blk.literals = append(blk.literals, src[nextEmit:s]...) |
|
} |
|
seq.offset = uint32(s-t) + 3 |
|
s += l |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
nextEmit = s |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
|
|
// Index match start+1 (long) and start+2 (short) |
|
index0 := s - l + 1 |
|
// Index match end-2 (long) and end-1 (short) |
|
index1 := s - 2 |
|
|
|
cv0 := load6432(src, index0) |
|
cv1 := load6432(src, index1) |
|
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} |
|
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} |
|
e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0 |
|
e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1 |
|
cv0 >>= 8 |
|
cv1 >>= 8 |
|
te0.offset++ |
|
te1.offset++ |
|
te0.val = uint32(cv0) |
|
te1.val = uint32(cv1) |
|
e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0 |
|
e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1 |
|
|
|
cv = load6432(src, s) |
|
|
|
if len(blk.sequences) <= 2 { |
|
continue |
|
} |
|
|
|
// Check offset 2 |
|
for { |
|
o2 := s - offset2 |
|
if load3232(src, o2) != uint32(cv) { |
|
// Do regular search |
|
break |
|
} |
|
|
|
// Store this, since we have it. |
|
nextHashS := hashLen(cv1>>8, dFastShortTableBits, dFastShortLen) |
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
|
|
// We have at least 4 byte match. |
|
// No need to check backwards. We come straight from a match |
|
//l := 4 + e.matchlen(s+4, o2+4, src) |
|
l := 4 + int32(matchLen(src[s+4:], src[o2+4:])) |
|
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)} |
|
e.longTable[nextHashL] = entry |
|
e.table[nextHashS] = entry |
|
seq.matchLen = uint32(l) - zstdMinMatch |
|
seq.litLen = 0 |
|
|
|
// Since litlen is always 0, this is offset 1. |
|
seq.offset = 1 |
|
s += l |
|
nextEmit = s |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
|
|
// Swap offset 1 and 2. |
|
offset1, offset2 = offset2, offset1 |
|
if s >= sLimit { |
|
// Finished |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
} |
|
|
|
if int(nextEmit) < len(src) { |
|
blk.literals = append(blk.literals, src[nextEmit:]...) |
|
blk.extraLits = len(src) - int(nextEmit) |
|
} |
|
if debugEncoder { |
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) |
|
} |
|
|
|
// We do not store history, so we must offset e.cur to avoid false matches for next user. |
|
if e.cur < bufferReset { |
|
e.cur += int32(len(src)) |
|
} |
|
} |
|
|
|
// Encode will encode the content, with a dictionary if initialized for it. |
|
func (e *doubleFastEncoderDict) Encode(blk *blockEnc, src []byte) { |
|
const ( |
|
// Input margin is the number of bytes we read (8) |
|
// and the maximum we will read ahead (2) |
|
inputMargin = 8 + 2 |
|
minNonLiteralBlockSize = 16 |
|
) |
|
|
|
// Protect against e.cur wraparound. |
|
for e.cur >= bufferReset { |
|
if len(e.hist) == 0 { |
|
for i := range e.table[:] { |
|
e.table[i] = tableEntry{} |
|
} |
|
for i := range e.longTable[:] { |
|
e.longTable[i] = tableEntry{} |
|
} |
|
e.markAllShardsDirty() |
|
e.cur = e.maxMatchOff |
|
break |
|
} |
|
// Shift down everything in the table that isn't already too far away. |
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff |
|
for i := range e.table[:] { |
|
v := e.table[i].offset |
|
if v < minOff { |
|
v = 0 |
|
} else { |
|
v = v - e.cur + e.maxMatchOff |
|
} |
|
e.table[i].offset = v |
|
} |
|
for i := range e.longTable[:] { |
|
v := e.longTable[i].offset |
|
if v < minOff { |
|
v = 0 |
|
} else { |
|
v = v - e.cur + e.maxMatchOff |
|
} |
|
e.longTable[i].offset = v |
|
} |
|
e.markAllShardsDirty() |
|
e.cur = e.maxMatchOff |
|
break |
|
} |
|
|
|
s := e.addBlock(src) |
|
blk.size = len(src) |
|
if len(src) < minNonLiteralBlockSize { |
|
blk.extraLits = len(src) |
|
blk.literals = blk.literals[:len(src)] |
|
copy(blk.literals, src) |
|
return |
|
} |
|
|
|
// Override src |
|
src = e.hist |
|
sLimit := int32(len(src)) - inputMargin |
|
// stepSize is the number of bytes to skip on every main loop iteration. |
|
// It should be >= 1. |
|
const stepSize = 1 |
|
|
|
const kSearchStrength = 8 |
|
|
|
// nextEmit is where in src the next emitLiteral should start from. |
|
nextEmit := s |
|
cv := load6432(src, s) |
|
|
|
// Relative offsets |
|
offset1 := int32(blk.recentOffsets[0]) |
|
offset2 := int32(blk.recentOffsets[1]) |
|
|
|
addLiterals := func(s *seq, until int32) { |
|
if until == nextEmit { |
|
return |
|
} |
|
blk.literals = append(blk.literals, src[nextEmit:until]...) |
|
s.litLen = uint32(until - nextEmit) |
|
} |
|
if debugEncoder { |
|
println("recent offsets:", blk.recentOffsets) |
|
} |
|
|
|
encodeLoop: |
|
for { |
|
var t int32 |
|
// We allow the encoder to optionally turn off repeat offsets across blocks |
|
canRepeat := len(blk.sequences) > 2 |
|
|
|
for { |
|
if debugAsserts && canRepeat && offset1 == 0 { |
|
panic("offset0 was 0") |
|
} |
|
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) |
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
candidateL := e.longTable[nextHashL] |
|
candidateS := e.table[nextHashS] |
|
|
|
const repOff = 1 |
|
repIndex := s - offset1 + repOff |
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)} |
|
e.longTable[nextHashL] = entry |
|
e.markLongShardDirty(nextHashL) |
|
e.table[nextHashS] = entry |
|
e.markShardDirty(nextHashS) |
|
|
|
if canRepeat { |
|
if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { |
|
// Consider history as well. |
|
var seq seq |
|
lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) |
|
|
|
seq.matchLen = uint32(lenght - zstdMinMatch) |
|
|
|
// We might be able to match backwards. |
|
// Extend as long as we can. |
|
start := s + repOff |
|
// We end the search early, so we don't risk 0 literals |
|
// and have to do special offset treatment. |
|
startLimit := nextEmit + 1 |
|
|
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { |
|
repIndex-- |
|
start-- |
|
seq.matchLen++ |
|
} |
|
addLiterals(&seq, start) |
|
|
|
// rep 0 |
|
seq.offset = 1 |
|
if debugSequences { |
|
println("repeat sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
s += lenght + repOff |
|
nextEmit = s |
|
if s >= sLimit { |
|
if debugEncoder { |
|
println("repeat ended", s, lenght) |
|
|
|
} |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
continue |
|
} |
|
} |
|
// Find the offsets of our two matches. |
|
coffsetL := s - (candidateL.offset - e.cur) |
|
coffsetS := s - (candidateS.offset - e.cur) |
|
|
|
// Check if we have a long match. |
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { |
|
// Found a long match, likely at least 8 bytes. |
|
// Reference encoder checks all 8 bytes, we only check 4, |
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough. |
|
t = candidateL.offset - e.cur |
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
if debugAsserts && s-t > e.maxMatchOff { |
|
panic("s - t >e.maxMatchOff") |
|
} |
|
if debugMatches { |
|
println("long match") |
|
} |
|
break |
|
} |
|
|
|
// Check if we have a short match. |
|
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { |
|
// found a regular match |
|
// See if we can find a long match at s+1 |
|
const checkAt = 1 |
|
cv := load6432(src, s+checkAt) |
|
nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
candidateL = e.longTable[nextHashL] |
|
coffsetL = s - (candidateL.offset - e.cur) + checkAt |
|
|
|
// We can store it, since we have at least a 4 byte match. |
|
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} |
|
e.markLongShardDirty(nextHashL) |
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { |
|
// Found a long match, likely at least 8 bytes. |
|
// Reference encoder checks all 8 bytes, we only check 4, |
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough. |
|
t = candidateL.offset - e.cur |
|
s += checkAt |
|
if debugMatches { |
|
println("long match (after short)") |
|
} |
|
break |
|
} |
|
|
|
t = candidateS.offset - e.cur |
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
if debugAsserts && s-t > e.maxMatchOff { |
|
panic("s - t >e.maxMatchOff") |
|
} |
|
if debugAsserts && t < 0 { |
|
panic("t<0") |
|
} |
|
if debugMatches { |
|
println("short match") |
|
} |
|
break |
|
} |
|
|
|
// No match found, move forward in input. |
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
|
|
// A 4-byte match has been found. Update recent offsets. |
|
// We'll later see if more than 4 bytes. |
|
offset2 = offset1 |
|
offset1 = s - t |
|
|
|
if debugAsserts && s <= t { |
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) |
|
} |
|
|
|
if debugAsserts && canRepeat && int(offset1) > len(src) { |
|
panic("invalid offset") |
|
} |
|
|
|
// Extend the 4-byte match as long as possible. |
|
l := e.matchlen(s+4, t+4, src) + 4 |
|
|
|
// Extend backwards |
|
tMin := s - e.maxMatchOff |
|
if tMin < 0 { |
|
tMin = 0 |
|
} |
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { |
|
s-- |
|
t-- |
|
l++ |
|
} |
|
|
|
// Write our sequence |
|
var seq seq |
|
seq.litLen = uint32(s - nextEmit) |
|
seq.matchLen = uint32(l - zstdMinMatch) |
|
if seq.litLen > 0 { |
|
blk.literals = append(blk.literals, src[nextEmit:s]...) |
|
} |
|
seq.offset = uint32(s-t) + 3 |
|
s += l |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
nextEmit = s |
|
if s >= sLimit { |
|
break encodeLoop |
|
} |
|
|
|
// Index match start+1 (long) and start+2 (short) |
|
index0 := s - l + 1 |
|
// Index match end-2 (long) and end-1 (short) |
|
index1 := s - 2 |
|
|
|
cv0 := load6432(src, index0) |
|
cv1 := load6432(src, index1) |
|
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} |
|
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} |
|
longHash1 := hashLen(cv0, dFastLongTableBits, dFastLongLen) |
|
longHash2 := hashLen(cv0, dFastLongTableBits, dFastLongLen) |
|
e.longTable[longHash1] = te0 |
|
e.longTable[longHash2] = te1 |
|
e.markLongShardDirty(longHash1) |
|
e.markLongShardDirty(longHash2) |
|
cv0 >>= 8 |
|
cv1 >>= 8 |
|
te0.offset++ |
|
te1.offset++ |
|
te0.val = uint32(cv0) |
|
te1.val = uint32(cv1) |
|
hashVal1 := hashLen(cv0, dFastShortTableBits, dFastShortLen) |
|
hashVal2 := hashLen(cv1, dFastShortTableBits, dFastShortLen) |
|
e.table[hashVal1] = te0 |
|
e.markShardDirty(hashVal1) |
|
e.table[hashVal2] = te1 |
|
e.markShardDirty(hashVal2) |
|
|
|
cv = load6432(src, s) |
|
|
|
if !canRepeat { |
|
continue |
|
} |
|
|
|
// Check offset 2 |
|
for { |
|
o2 := s - offset2 |
|
if load3232(src, o2) != uint32(cv) { |
|
// Do regular search |
|
break |
|
} |
|
|
|
// Store this, since we have it. |
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) |
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) |
|
|
|
// We have at least 4 byte match. |
|
// No need to check backwards. We come straight from a match |
|
l := 4 + e.matchlen(s+4, o2+4, src) |
|
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)} |
|
e.longTable[nextHashL] = entry |
|
e.markLongShardDirty(nextHashL) |
|
e.table[nextHashS] = entry |
|
e.markShardDirty(nextHashS) |
|
seq.matchLen = uint32(l) - zstdMinMatch |
|
seq.litLen = 0 |
|
|
|
// Since litlen is always 0, this is offset 1. |
|
seq.offset = 1 |
|
s += l |
|
nextEmit = s |
|
if debugSequences { |
|
println("sequence", seq, "next s:", s) |
|
} |
|
blk.sequences = append(blk.sequences, seq) |
|
|
|
// Swap offset 1 and 2. |
|
offset1, offset2 = offset2, offset1 |
|
if s >= sLimit { |
|
// Finished |
|
break encodeLoop |
|
} |
|
cv = load6432(src, s) |
|
} |
|
} |
|
|
|
if int(nextEmit) < len(src) { |
|
blk.literals = append(blk.literals, src[nextEmit:]...) |
|
blk.extraLits = len(src) - int(nextEmit) |
|
} |
|
blk.recentOffsets[0] = uint32(offset1) |
|
blk.recentOffsets[1] = uint32(offset2) |
|
if debugEncoder { |
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) |
|
} |
|
// If we encoded more than 64K mark all dirty. |
|
if len(src) > 64<<10 { |
|
e.markAllShardsDirty() |
|
} |
|
} |
|
|
|
// ResetDict will reset and set a dictionary if not nil |
|
func (e *doubleFastEncoder) Reset(d *dict, singleBlock bool) { |
|
e.fastEncoder.Reset(d, singleBlock) |
|
if d != nil { |
|
panic("doubleFastEncoder: Reset with dict not supported") |
|
} |
|
} |
|
|
|
// ResetDict will reset and set a dictionary if not nil |
|
func (e *doubleFastEncoderDict) Reset(d *dict, singleBlock bool) { |
|
allDirty := e.allDirty |
|
e.fastEncoderDict.Reset(d, singleBlock) |
|
if d == nil { |
|
return |
|
} |
|
|
|
// Init or copy dict table |
|
if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID { |
|
if len(e.dictLongTable) != len(e.longTable) { |
|
e.dictLongTable = make([]tableEntry, len(e.longTable)) |
|
} |
|
if len(d.content) >= 8 { |
|
cv := load6432(d.content, 0) |
|
e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{ |
|
val: uint32(cv), |
|
offset: e.maxMatchOff, |
|
} |
|
end := int32(len(d.content)) - 8 + e.maxMatchOff |
|
for i := e.maxMatchOff + 1; i < end; i++ { |
|
cv = cv>>8 | (uint64(d.content[i-e.maxMatchOff+7]) << 56) |
|
e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{ |
|
val: uint32(cv), |
|
offset: i, |
|
} |
|
} |
|
} |
|
e.lastDictID = d.id |
|
e.allDirty = true |
|
} |
|
// Reset table to initial state |
|
e.cur = e.maxMatchOff |
|
|
|
dirtyShardCnt := 0 |
|
if !allDirty { |
|
for i := range e.longTableShardDirty { |
|
if e.longTableShardDirty[i] { |
|
dirtyShardCnt++ |
|
} |
|
} |
|
} |
|
|
|
if allDirty || dirtyShardCnt > dLongTableShardCnt/2 { |
|
copy(e.longTable[:], e.dictLongTable) |
|
for i := range e.longTableShardDirty { |
|
e.longTableShardDirty[i] = false |
|
} |
|
return |
|
} |
|
for i := range e.longTableShardDirty { |
|
if !e.longTableShardDirty[i] { |
|
continue |
|
} |
|
|
|
copy(e.longTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize], e.dictLongTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize]) |
|
e.longTableShardDirty[i] = false |
|
} |
|
} |
|
|
|
func (e *doubleFastEncoderDict) markLongShardDirty(entryNum uint32) { |
|
e.longTableShardDirty[entryNum/dLongTableShardSize] = true |
|
}
|
|
|