You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
724 lines
19 KiB
724 lines
19 KiB
// Copyright 2019+ Klaus Post. All rights reserved. |
|
// License information can be found in the LICENSE file. |
|
// Based on work by Yann Collet, released under BSD License. |
|
|
|
package zstd |
|
|
|
import ( |
|
"errors" |
|
"fmt" |
|
"math" |
|
) |
|
|
|
const ( |
|
// For encoding we only support up to |
|
maxEncTableLog = 8 |
|
maxEncTablesize = 1 << maxTableLog |
|
maxEncTableMask = (1 << maxTableLog) - 1 |
|
minEncTablelog = 5 |
|
maxEncSymbolValue = maxMatchLengthSymbol |
|
) |
|
|
|
// Scratch provides temporary storage for compression and decompression. |
|
type fseEncoder struct { |
|
symbolLen uint16 // Length of active part of the symbol table. |
|
actualTableLog uint8 // Selected tablelog. |
|
ct cTable // Compression tables. |
|
maxCount int // count of the most probable symbol |
|
zeroBits bool // no bits has prob > 50%. |
|
clearCount bool // clear count |
|
useRLE bool // This encoder is for RLE |
|
preDefined bool // This encoder is predefined. |
|
reUsed bool // Set to know when the encoder has been reused. |
|
rleVal uint8 // RLE Symbol |
|
maxBits uint8 // Maximum output bits after transform. |
|
|
|
// TODO: Technically zstd should be fine with 64 bytes. |
|
count [256]uint32 |
|
norm [256]int16 |
|
} |
|
|
|
// cTable contains tables used for compression. |
|
type cTable struct { |
|
tableSymbol []byte |
|
stateTable []uint16 |
|
symbolTT []symbolTransform |
|
} |
|
|
|
// symbolTransform contains the state transform for a symbol. |
|
type symbolTransform struct { |
|
deltaNbBits uint32 |
|
deltaFindState int16 |
|
outBits uint8 |
|
} |
|
|
|
// String prints values as a human readable string. |
|
func (s symbolTransform) String() string { |
|
return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits) |
|
} |
|
|
|
// Histogram allows to populate the histogram and skip that step in the compression, |
|
// It otherwise allows to inspect the histogram when compression is done. |
|
// To indicate that you have populated the histogram call HistogramFinished |
|
// with the value of the highest populated symbol, as well as the number of entries |
|
// in the most populated entry. These are accepted at face value. |
|
func (s *fseEncoder) Histogram() *[256]uint32 { |
|
return &s.count |
|
} |
|
|
|
// HistogramFinished can be called to indicate that the histogram has been populated. |
|
// maxSymbol is the index of the highest set symbol of the next data segment. |
|
// maxCount is the number of entries in the most populated entry. |
|
// These are accepted at face value. |
|
func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) { |
|
s.maxCount = maxCount |
|
s.symbolLen = uint16(maxSymbol) + 1 |
|
s.clearCount = maxCount != 0 |
|
} |
|
|
|
// prepare will prepare and allocate scratch tables used for both compression and decompression. |
|
func (s *fseEncoder) prepare() (*fseEncoder, error) { |
|
if s == nil { |
|
s = &fseEncoder{} |
|
} |
|
s.useRLE = false |
|
if s.clearCount && s.maxCount == 0 { |
|
for i := range s.count { |
|
s.count[i] = 0 |
|
} |
|
s.clearCount = false |
|
} |
|
return s, nil |
|
} |
|
|
|
// allocCtable will allocate tables needed for compression. |
|
// If existing tables a re big enough, they are simply re-used. |
|
func (s *fseEncoder) allocCtable() { |
|
tableSize := 1 << s.actualTableLog |
|
// get tableSymbol that is big enough. |
|
if cap(s.ct.tableSymbol) < tableSize { |
|
s.ct.tableSymbol = make([]byte, tableSize) |
|
} |
|
s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] |
|
|
|
ctSize := tableSize |
|
if cap(s.ct.stateTable) < ctSize { |
|
s.ct.stateTable = make([]uint16, ctSize) |
|
} |
|
s.ct.stateTable = s.ct.stateTable[:ctSize] |
|
|
|
if cap(s.ct.symbolTT) < 256 { |
|
s.ct.symbolTT = make([]symbolTransform, 256) |
|
} |
|
s.ct.symbolTT = s.ct.symbolTT[:256] |
|
} |
|
|
|
// buildCTable will populate the compression table so it is ready to be used. |
|
func (s *fseEncoder) buildCTable() error { |
|
tableSize := uint32(1 << s.actualTableLog) |
|
highThreshold := tableSize - 1 |
|
var cumul [256]int16 |
|
|
|
s.allocCtable() |
|
tableSymbol := s.ct.tableSymbol[:tableSize] |
|
// symbol start positions |
|
{ |
|
cumul[0] = 0 |
|
for ui, v := range s.norm[:s.symbolLen-1] { |
|
u := byte(ui) // one less than reference |
|
if v == -1 { |
|
// Low proba symbol |
|
cumul[u+1] = cumul[u] + 1 |
|
tableSymbol[highThreshold] = u |
|
highThreshold-- |
|
} else { |
|
cumul[u+1] = cumul[u] + v |
|
} |
|
} |
|
// Encode last symbol separately to avoid overflowing u |
|
u := int(s.symbolLen - 1) |
|
v := s.norm[s.symbolLen-1] |
|
if v == -1 { |
|
// Low proba symbol |
|
cumul[u+1] = cumul[u] + 1 |
|
tableSymbol[highThreshold] = byte(u) |
|
highThreshold-- |
|
} else { |
|
cumul[u+1] = cumul[u] + v |
|
} |
|
if uint32(cumul[s.symbolLen]) != tableSize { |
|
return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) |
|
} |
|
cumul[s.symbolLen] = int16(tableSize) + 1 |
|
} |
|
// Spread symbols |
|
s.zeroBits = false |
|
{ |
|
step := tableStep(tableSize) |
|
tableMask := tableSize - 1 |
|
var position uint32 |
|
// if any symbol > largeLimit, we may have 0 bits output. |
|
largeLimit := int16(1 << (s.actualTableLog - 1)) |
|
for ui, v := range s.norm[:s.symbolLen] { |
|
symbol := byte(ui) |
|
if v > largeLimit { |
|
s.zeroBits = true |
|
} |
|
for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { |
|
tableSymbol[position] = symbol |
|
position = (position + step) & tableMask |
|
for position > highThreshold { |
|
position = (position + step) & tableMask |
|
} /* Low proba area */ |
|
} |
|
} |
|
|
|
// Check if we have gone through all positions |
|
if position != 0 { |
|
return errors.New("position!=0") |
|
} |
|
} |
|
|
|
// Build table |
|
table := s.ct.stateTable |
|
{ |
|
tsi := int(tableSize) |
|
for u, v := range tableSymbol { |
|
// TableU16 : sorted by symbol order; gives next state value |
|
table[cumul[v]] = uint16(tsi + u) |
|
cumul[v]++ |
|
} |
|
} |
|
|
|
// Build Symbol Transformation Table |
|
{ |
|
total := int16(0) |
|
symbolTT := s.ct.symbolTT[:s.symbolLen] |
|
tableLog := s.actualTableLog |
|
tl := (uint32(tableLog) << 16) - (1 << tableLog) |
|
for i, v := range s.norm[:s.symbolLen] { |
|
switch v { |
|
case 0: |
|
case -1, 1: |
|
symbolTT[i].deltaNbBits = tl |
|
symbolTT[i].deltaFindState = total - 1 |
|
total++ |
|
default: |
|
maxBitsOut := uint32(tableLog) - highBit(uint32(v-1)) |
|
minStatePlus := uint32(v) << maxBitsOut |
|
symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus |
|
symbolTT[i].deltaFindState = total - v |
|
total += v |
|
} |
|
} |
|
if total != int16(tableSize) { |
|
return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} |
|
|
|
func (s *fseEncoder) setRLE(val byte) { |
|
s.allocCtable() |
|
s.actualTableLog = 0 |
|
s.ct.stateTable = s.ct.stateTable[:1] |
|
s.ct.symbolTT[val] = symbolTransform{ |
|
deltaFindState: 0, |
|
deltaNbBits: 0, |
|
} |
|
if debugEncoder { |
|
println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val]) |
|
} |
|
s.rleVal = val |
|
s.useRLE = true |
|
} |
|
|
|
// setBits will set output bits for the transform. |
|
// if nil is provided, the number of bits is equal to the index. |
|
func (s *fseEncoder) setBits(transform []byte) { |
|
if s.reUsed || s.preDefined { |
|
return |
|
} |
|
if s.useRLE { |
|
if transform == nil { |
|
s.ct.symbolTT[s.rleVal].outBits = s.rleVal |
|
s.maxBits = s.rleVal |
|
return |
|
} |
|
s.maxBits = transform[s.rleVal] |
|
s.ct.symbolTT[s.rleVal].outBits = s.maxBits |
|
return |
|
} |
|
if transform == nil { |
|
for i := range s.ct.symbolTT[:s.symbolLen] { |
|
s.ct.symbolTT[i].outBits = uint8(i) |
|
} |
|
s.maxBits = uint8(s.symbolLen - 1) |
|
return |
|
} |
|
s.maxBits = 0 |
|
for i, v := range transform[:s.symbolLen] { |
|
s.ct.symbolTT[i].outBits = v |
|
if v > s.maxBits { |
|
// We could assume bits always going up, but we play safe. |
|
s.maxBits = v |
|
} |
|
} |
|
} |
|
|
|
// normalizeCount will normalize the count of the symbols so |
|
// the total is equal to the table size. |
|
// If successful, compression tables will also be made ready. |
|
func (s *fseEncoder) normalizeCount(length int) error { |
|
if s.reUsed { |
|
return nil |
|
} |
|
s.optimalTableLog(length) |
|
var ( |
|
tableLog = s.actualTableLog |
|
scale = 62 - uint64(tableLog) |
|
step = (1 << 62) / uint64(length) |
|
vStep = uint64(1) << (scale - 20) |
|
stillToDistribute = int16(1 << tableLog) |
|
largest int |
|
largestP int16 |
|
lowThreshold = (uint32)(length >> tableLog) |
|
) |
|
if s.maxCount == length { |
|
s.useRLE = true |
|
return nil |
|
} |
|
s.useRLE = false |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
// already handled |
|
// if (count[s] == s.length) return 0; /* rle special case */ |
|
|
|
if cnt == 0 { |
|
s.norm[i] = 0 |
|
continue |
|
} |
|
if cnt <= lowThreshold { |
|
s.norm[i] = -1 |
|
stillToDistribute-- |
|
} else { |
|
proba := (int16)((uint64(cnt) * step) >> scale) |
|
if proba < 8 { |
|
restToBeat := vStep * uint64(rtbTable[proba]) |
|
v := uint64(cnt)*step - (uint64(proba) << scale) |
|
if v > restToBeat { |
|
proba++ |
|
} |
|
} |
|
if proba > largestP { |
|
largestP = proba |
|
largest = i |
|
} |
|
s.norm[i] = proba |
|
stillToDistribute -= proba |
|
} |
|
} |
|
|
|
if -stillToDistribute >= (s.norm[largest] >> 1) { |
|
// corner case, need another normalization method |
|
err := s.normalizeCount2(length) |
|
if err != nil { |
|
return err |
|
} |
|
if debugAsserts { |
|
err = s.validateNorm() |
|
if err != nil { |
|
return err |
|
} |
|
} |
|
return s.buildCTable() |
|
} |
|
s.norm[largest] += stillToDistribute |
|
if debugAsserts { |
|
err := s.validateNorm() |
|
if err != nil { |
|
return err |
|
} |
|
} |
|
return s.buildCTable() |
|
} |
|
|
|
// Secondary normalization method. |
|
// To be used when primary method fails. |
|
func (s *fseEncoder) normalizeCount2(length int) error { |
|
const notYetAssigned = -2 |
|
var ( |
|
distributed uint32 |
|
total = uint32(length) |
|
tableLog = s.actualTableLog |
|
lowThreshold = total >> tableLog |
|
lowOne = (total * 3) >> (tableLog + 1) |
|
) |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if cnt == 0 { |
|
s.norm[i] = 0 |
|
continue |
|
} |
|
if cnt <= lowThreshold { |
|
s.norm[i] = -1 |
|
distributed++ |
|
total -= cnt |
|
continue |
|
} |
|
if cnt <= lowOne { |
|
s.norm[i] = 1 |
|
distributed++ |
|
total -= cnt |
|
continue |
|
} |
|
s.norm[i] = notYetAssigned |
|
} |
|
toDistribute := (1 << tableLog) - distributed |
|
|
|
if (total / toDistribute) > lowOne { |
|
// risk of rounding to zero |
|
lowOne = (total * 3) / (toDistribute * 2) |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { |
|
s.norm[i] = 1 |
|
distributed++ |
|
total -= cnt |
|
continue |
|
} |
|
} |
|
toDistribute = (1 << tableLog) - distributed |
|
} |
|
if distributed == uint32(s.symbolLen)+1 { |
|
// all values are pretty poor; |
|
// probably incompressible data (should have already been detected); |
|
// find max, then give all remaining points to max |
|
var maxV int |
|
var maxC uint32 |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if cnt > maxC { |
|
maxV = i |
|
maxC = cnt |
|
} |
|
} |
|
s.norm[maxV] += int16(toDistribute) |
|
return nil |
|
} |
|
|
|
if total == 0 { |
|
// all of the symbols were low enough for the lowOne or lowThreshold |
|
for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { |
|
if s.norm[i] > 0 { |
|
toDistribute-- |
|
s.norm[i]++ |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
var ( |
|
vStepLog = 62 - uint64(tableLog) |
|
mid = uint64((1 << (vStepLog - 1)) - 1) |
|
rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining |
|
tmpTotal = mid |
|
) |
|
for i, cnt := range s.count[:s.symbolLen] { |
|
if s.norm[i] == notYetAssigned { |
|
var ( |
|
end = tmpTotal + uint64(cnt)*rStep |
|
sStart = uint32(tmpTotal >> vStepLog) |
|
sEnd = uint32(end >> vStepLog) |
|
weight = sEnd - sStart |
|
) |
|
if weight < 1 { |
|
return errors.New("weight < 1") |
|
} |
|
s.norm[i] = int16(weight) |
|
tmpTotal = end |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog |
|
func (s *fseEncoder) optimalTableLog(length int) { |
|
tableLog := uint8(maxEncTableLog) |
|
minBitsSrc := highBit(uint32(length)) + 1 |
|
minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2 |
|
minBits := uint8(minBitsSymbols) |
|
if minBitsSrc < minBitsSymbols { |
|
minBits = uint8(minBitsSrc) |
|
} |
|
|
|
maxBitsSrc := uint8(highBit(uint32(length-1))) - 2 |
|
if maxBitsSrc < tableLog { |
|
// Accuracy can be reduced |
|
tableLog = maxBitsSrc |
|
} |
|
if minBits > tableLog { |
|
tableLog = minBits |
|
} |
|
// Need a minimum to safely represent all symbol values |
|
if tableLog < minEncTablelog { |
|
tableLog = minEncTablelog |
|
} |
|
if tableLog > maxEncTableLog { |
|
tableLog = maxEncTableLog |
|
} |
|
s.actualTableLog = tableLog |
|
} |
|
|
|
// validateNorm validates the normalized histogram table. |
|
func (s *fseEncoder) validateNorm() (err error) { |
|
var total int |
|
for _, v := range s.norm[:s.symbolLen] { |
|
if v >= 0 { |
|
total += int(v) |
|
} else { |
|
total -= int(v) |
|
} |
|
} |
|
defer func() { |
|
if err == nil { |
|
return |
|
} |
|
fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) |
|
for i, v := range s.norm[:s.symbolLen] { |
|
fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) |
|
} |
|
}() |
|
if total != (1 << s.actualTableLog) { |
|
return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) |
|
} |
|
for i, v := range s.count[s.symbolLen:] { |
|
if v != 0 { |
|
return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) |
|
} |
|
} |
|
return nil |
|
} |
|
|
|
// writeCount will write the normalized histogram count to header. |
|
// This is read back by readNCount. |
|
func (s *fseEncoder) writeCount(out []byte) ([]byte, error) { |
|
if s.useRLE { |
|
return append(out, s.rleVal), nil |
|
} |
|
if s.preDefined || s.reUsed { |
|
// Never write predefined. |
|
return out, nil |
|
} |
|
|
|
var ( |
|
tableLog = s.actualTableLog |
|
tableSize = 1 << tableLog |
|
previous0 bool |
|
charnum uint16 |
|
|
|
// maximum header size plus 2 extra bytes for final output if bitCount == 0. |
|
maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2 |
|
|
|
// Write Table Size |
|
bitStream = uint32(tableLog - minEncTablelog) |
|
bitCount = uint(4) |
|
remaining = int16(tableSize + 1) /* +1 for extra accuracy */ |
|
threshold = int16(tableSize) |
|
nbBits = uint(tableLog + 1) |
|
outP = len(out) |
|
) |
|
if cap(out) < outP+maxHeaderSize { |
|
out = append(out, make([]byte, maxHeaderSize*3)...) |
|
out = out[:len(out)-maxHeaderSize*3] |
|
} |
|
out = out[:outP+maxHeaderSize] |
|
|
|
// stops at 1 |
|
for remaining > 1 { |
|
if previous0 { |
|
start := charnum |
|
for s.norm[charnum] == 0 { |
|
charnum++ |
|
} |
|
for charnum >= start+24 { |
|
start += 24 |
|
bitStream += uint32(0xFFFF) << bitCount |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += 2 |
|
bitStream >>= 16 |
|
} |
|
for charnum >= start+3 { |
|
start += 3 |
|
bitStream += 3 << bitCount |
|
bitCount += 2 |
|
} |
|
bitStream += uint32(charnum-start) << bitCount |
|
bitCount += 2 |
|
if bitCount > 16 { |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += 2 |
|
bitStream >>= 16 |
|
bitCount -= 16 |
|
} |
|
} |
|
|
|
count := s.norm[charnum] |
|
charnum++ |
|
max := (2*threshold - 1) - remaining |
|
if count < 0 { |
|
remaining += count |
|
} else { |
|
remaining -= count |
|
} |
|
count++ // +1 for extra accuracy |
|
if count >= threshold { |
|
count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ |
|
} |
|
bitStream += uint32(count) << bitCount |
|
bitCount += nbBits |
|
if count < max { |
|
bitCount-- |
|
} |
|
|
|
previous0 = count == 1 |
|
if remaining < 1 { |
|
return nil, errors.New("internal error: remaining < 1") |
|
} |
|
for remaining < threshold { |
|
nbBits-- |
|
threshold >>= 1 |
|
} |
|
|
|
if bitCount > 16 { |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += 2 |
|
bitStream >>= 16 |
|
bitCount -= 16 |
|
} |
|
} |
|
|
|
if outP+2 > len(out) { |
|
return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen]) |
|
} |
|
out[outP] = byte(bitStream) |
|
out[outP+1] = byte(bitStream >> 8) |
|
outP += int((bitCount + 7) / 8) |
|
|
|
if charnum > s.symbolLen { |
|
return nil, errors.New("internal error: charnum > s.symbolLen") |
|
} |
|
return out[:outP], nil |
|
} |
|
|
|
// Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) |
|
// note 1 : assume symbolValue is valid (<= maxSymbolValue) |
|
// note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits * |
|
func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 { |
|
minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16 |
|
threshold := (minNbBits + 1) << 16 |
|
if debugAsserts { |
|
if !(s.actualTableLog < 16) { |
|
panic("!s.actualTableLog < 16") |
|
} |
|
// ensure enough room for renormalization double shift |
|
if !(uint8(accuracyLog) < 31-s.actualTableLog) { |
|
panic("!uint8(accuracyLog) < 31-s.actualTableLog") |
|
} |
|
} |
|
tableSize := uint32(1) << s.actualTableLog |
|
deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize) |
|
// linear interpolation (very approximate) |
|
normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog |
|
bitMultiplier := uint32(1) << accuracyLog |
|
if debugAsserts { |
|
if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold { |
|
panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold") |
|
} |
|
if normalizedDeltaFromThreshold > bitMultiplier { |
|
panic("normalizedDeltaFromThreshold > bitMultiplier") |
|
} |
|
} |
|
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold |
|
} |
|
|
|
// Returns the cost in bits of encoding the distribution in count using ctable. |
|
// Histogram should only be up to the last non-zero symbol. |
|
// Returns an -1 if ctable cannot represent all the symbols in count. |
|
func (s *fseEncoder) approxSize(hist []uint32) uint32 { |
|
if int(s.symbolLen) < len(hist) { |
|
// More symbols than we have. |
|
return math.MaxUint32 |
|
} |
|
if s.useRLE { |
|
// We will never reuse RLE encoders. |
|
return math.MaxUint32 |
|
} |
|
const kAccuracyLog = 8 |
|
badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog |
|
var cost uint32 |
|
for i, v := range hist { |
|
if v == 0 { |
|
continue |
|
} |
|
if s.norm[i] == 0 { |
|
return math.MaxUint32 |
|
} |
|
bitCost := s.bitCost(uint8(i), kAccuracyLog) |
|
if bitCost > badCost { |
|
return math.MaxUint32 |
|
} |
|
cost += v * bitCost |
|
} |
|
return cost >> kAccuracyLog |
|
} |
|
|
|
// maxHeaderSize returns the maximum header size in bits. |
|
// This is not exact size, but we want a penalty for new tables anyway. |
|
func (s *fseEncoder) maxHeaderSize() uint32 { |
|
if s.preDefined { |
|
return 0 |
|
} |
|
if s.useRLE { |
|
return 8 |
|
} |
|
return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8 |
|
} |
|
|
|
// cState contains the compression state of a stream. |
|
type cState struct { |
|
bw *bitWriter |
|
stateTable []uint16 |
|
state uint16 |
|
} |
|
|
|
// init will initialize the compression state to the first symbol of the stream. |
|
func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) { |
|
c.bw = bw |
|
c.stateTable = ct.stateTable |
|
if len(c.stateTable) == 1 { |
|
// RLE |
|
c.stateTable[0] = uint16(0) |
|
c.state = 0 |
|
return |
|
} |
|
nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 |
|
im := int32((nbBitsOut << 16) - first.deltaNbBits) |
|
lu := (im >> nbBitsOut) + int32(first.deltaFindState) |
|
c.state = c.stateTable[lu] |
|
} |
|
|
|
// encode the output symbol provided and write it to the bitstream. |
|
func (c *cState) encode(symbolTT symbolTransform) { |
|
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
|
dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState) |
|
c.bw.addBits16NC(c.state, uint8(nbBitsOut)) |
|
c.state = c.stateTable[dstState] |
|
} |
|
|
|
// flush will write the tablelog to the output and flush the remaining full bytes. |
|
func (c *cState) flush(tableLog uint8) { |
|
c.bw.flush32() |
|
c.bw.addBits16NC(c.state, tableLog) |
|
}
|
|
|