You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

62 lines
1.5 KiB

package crypto
import (
"math/big"
"github.com/go-faster/errors"
)
// CheckGP checks whether g generates a cyclic subgroup of prime order (p-1)/2, i.e. is a quadratic residue mod p.
// Also check that g is 2, 3, 4, 5, 6 or 7.
//
// This function is needed by some Telegram algorithms(Key generation, SRP 2FA).
//
// See https://core.telegram.org/mtproto/auth_key.
//
// See https://core.telegram.org/api/srp.
func CheckGP(g int, p *big.Int) error {
// Since g is always equal to 2, 3, 4, 5, 6 or 7,
// this is easily done using quadratic reciprocity law, yielding a simple condition on p mod 4g -- namely,
var result bool
switch g {
case 2:
// p mod 8 = 7 for g = 2;
result = checkSubgroup(p, 8, 7)
case 3:
// p mod 3 = 2 for g = 3;
result = checkSubgroup(p, 3, 2)
case 4:
// no extra condition for g = 4
result = true
case 5:
// p mod 5 = 1 or 4 for g = 5;
result = checkSubgroup(p, 5, 1, 4)
case 6:
// p mod 24 = 19 or 23 for g = 6;
result = checkSubgroup(p, 24, 19, 23)
case 7:
// and p mod 7 = 3, 5 or 6 for g = 7.
result = checkSubgroup(p, 7, 3, 5, 6)
default:
return errors.Errorf("unexpected g = %d: g should be equal to 2, 3, 4, 5, 6 or 7", g)
}
if !result {
return errors.New("g should be a quadratic residue mod p")
}
return nil
}
func checkSubgroup(p *big.Int, divider int64, expected ...int64) bool {
rem := new(big.Int).Rem(p, big.NewInt(divider)).Int64()
for _, e := range expected {
if rem == e {
return true
}
}
return false
}