package crypto import ( "math/big" "github.com/go-faster/errors" ) // CheckDH performs DH parameters check described in Telegram docs. // // Client is expected to check whether p is a safe 2048-bit prime (meaning that both p and (p-1)/2 are prime, // and that 2^2047 < p < 2^2048), and that g generates a cyclic subgroup of prime order (p-1)/2, i.e. // is a quadratic residue mod p. Since g is always equal to 2, 3, 4, 5, 6 or 7, this is easily done using quadratic // reciprocity law, yielding a simple condition on p mod 4g — namely, p mod 8 = 7 for g = 2; p mod 3 = 2 for g = 3; // no extra condition for g = 4; p mod 5 = 1 or 4 for g = 5; p mod 24 = 19 or 23 for g = 6; and p mod 7 = 3, // 5 or 6 for g = 7. // // See https://core.telegram.org/mtproto/auth_key#presenting-proof-of-work-server-authentication. // // See https://core.telegram.org/api/srp#checking-the-password-with-srp. // // See https://core.telegram.org/api/end-to-end#sending-a-request. func CheckDH(g int, p *big.Int) error { // The client is expected to check whether p is a safe 2048-bit prime // (meaning that both p and (p-1)/2 are prime, and that 2^2047 < p < 2^2048). // FIXME(tdakkota): we check that 2^2047 <= p < 2^2048 // but docs says to check 2^2047 < p < 2^2048. // // TDLib check 2^2047 <= too: // https://github.com/tdlib/td/blob/d161323858a782bc500d188b9ae916982526c262/td/mtproto/DhHandshake.cpp#L23 if p.BitLen() != RSAKeyBits { return errors.New("p should be 2^2047 < p < 2^2048") } if err := CheckGP(g, p); err != nil { return err } return checkPrime(p) } func checkPrime(p *big.Int) error { if !Prime(p) { return errors.New("p is not prime number") } sub := big.NewInt(0).Sub(p, big.NewInt(1)) pr := sub.Quo(sub, big.NewInt(2)) if !Prime(pr) { return errors.New("(p-1)/2 is not prime number") } return nil }