You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
10 KiB
384 lines
10 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package flate |
|
|
|
import ( |
|
"math" |
|
"math/bits" |
|
) |
|
|
|
const ( |
|
maxBitsLimit = 16 |
|
// number of valid literals |
|
literalCount = 286 |
|
) |
|
|
|
// hcode is a huffman code with a bit code and bit length. |
|
type hcode struct { |
|
code uint16 |
|
len uint8 |
|
} |
|
|
|
type huffmanEncoder struct { |
|
codes []hcode |
|
bitCount [17]int32 |
|
|
|
// Allocate a reusable buffer with the longest possible frequency table. |
|
// Possible lengths are codegenCodeCount, offsetCodeCount and literalCount. |
|
// The largest of these is literalCount, so we allocate for that case. |
|
freqcache [literalCount + 1]literalNode |
|
} |
|
|
|
type literalNode struct { |
|
literal uint16 |
|
freq uint16 |
|
} |
|
|
|
// A levelInfo describes the state of the constructed tree for a given depth. |
|
type levelInfo struct { |
|
// Our level. for better printing |
|
level int32 |
|
|
|
// The frequency of the last node at this level |
|
lastFreq int32 |
|
|
|
// The frequency of the next character to add to this level |
|
nextCharFreq int32 |
|
|
|
// The frequency of the next pair (from level below) to add to this level. |
|
// Only valid if the "needed" value of the next lower level is 0. |
|
nextPairFreq int32 |
|
|
|
// The number of chains remaining to generate for this level before moving |
|
// up to the next level |
|
needed int32 |
|
} |
|
|
|
// set sets the code and length of an hcode. |
|
func (h *hcode) set(code uint16, length uint8) { |
|
h.len = length |
|
h.code = code |
|
} |
|
|
|
func reverseBits(number uint16, bitLength byte) uint16 { |
|
return bits.Reverse16(number << ((16 - bitLength) & 15)) |
|
} |
|
|
|
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} } |
|
|
|
func newHuffmanEncoder(size int) *huffmanEncoder { |
|
// Make capacity to next power of two. |
|
c := uint(bits.Len32(uint32(size - 1))) |
|
return &huffmanEncoder{codes: make([]hcode, size, 1<<c)} |
|
} |
|
|
|
// Generates a HuffmanCode corresponding to the fixed literal table |
|
func generateFixedLiteralEncoding() *huffmanEncoder { |
|
h := newHuffmanEncoder(literalCount) |
|
codes := h.codes |
|
var ch uint16 |
|
for ch = 0; ch < literalCount; ch++ { |
|
var bits uint16 |
|
var size uint8 |
|
switch { |
|
case ch < 144: |
|
// size 8, 000110000 .. 10111111 |
|
bits = ch + 48 |
|
size = 8 |
|
case ch < 256: |
|
// size 9, 110010000 .. 111111111 |
|
bits = ch + 400 - 144 |
|
size = 9 |
|
case ch < 280: |
|
// size 7, 0000000 .. 0010111 |
|
bits = ch - 256 |
|
size = 7 |
|
default: |
|
// size 8, 11000000 .. 11000111 |
|
bits = ch + 192 - 280 |
|
size = 8 |
|
} |
|
codes[ch] = hcode{code: reverseBits(bits, size), len: size} |
|
} |
|
return h |
|
} |
|
|
|
func generateFixedOffsetEncoding() *huffmanEncoder { |
|
h := newHuffmanEncoder(30) |
|
codes := h.codes |
|
for ch := range codes { |
|
codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5} |
|
} |
|
return h |
|
} |
|
|
|
var fixedLiteralEncoding = generateFixedLiteralEncoding() |
|
var fixedOffsetEncoding = generateFixedOffsetEncoding() |
|
|
|
func (h *huffmanEncoder) bitLength(freq []uint16) int { |
|
var total int |
|
for i, f := range freq { |
|
if f != 0 { |
|
total += int(f) * int(h.codes[i].len) |
|
} |
|
} |
|
return total |
|
} |
|
|
|
func (h *huffmanEncoder) bitLengthRaw(b []byte) int { |
|
var total int |
|
for _, f := range b { |
|
total += int(h.codes[f].len) |
|
} |
|
return total |
|
} |
|
|
|
// canReuseBits returns the number of bits or math.MaxInt32 if the encoder cannot be reused. |
|
func (h *huffmanEncoder) canReuseBits(freq []uint16) int { |
|
var total int |
|
for i, f := range freq { |
|
if f != 0 { |
|
code := h.codes[i] |
|
if code.len == 0 { |
|
return math.MaxInt32 |
|
} |
|
total += int(f) * int(code.len) |
|
} |
|
} |
|
return total |
|
} |
|
|
|
// Return the number of literals assigned to each bit size in the Huffman encoding |
|
// |
|
// This method is only called when list.length >= 3 |
|
// The cases of 0, 1, and 2 literals are handled by special case code. |
|
// |
|
// list An array of the literals with non-zero frequencies |
|
// and their associated frequencies. The array is in order of increasing |
|
// frequency, and has as its last element a special element with frequency |
|
// MaxInt32 |
|
// maxBits The maximum number of bits that should be used to encode any literal. |
|
// Must be less than 16. |
|
// return An integer array in which array[i] indicates the number of literals |
|
// that should be encoded in i bits. |
|
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { |
|
if maxBits >= maxBitsLimit { |
|
panic("flate: maxBits too large") |
|
} |
|
n := int32(len(list)) |
|
list = list[0 : n+1] |
|
list[n] = maxNode() |
|
|
|
// The tree can't have greater depth than n - 1, no matter what. This |
|
// saves a little bit of work in some small cases |
|
if maxBits > n-1 { |
|
maxBits = n - 1 |
|
} |
|
|
|
// Create information about each of the levels. |
|
// A bogus "Level 0" whose sole purpose is so that |
|
// level1.prev.needed==0. This makes level1.nextPairFreq |
|
// be a legitimate value that never gets chosen. |
|
var levels [maxBitsLimit]levelInfo |
|
// leafCounts[i] counts the number of literals at the left |
|
// of ancestors of the rightmost node at level i. |
|
// leafCounts[i][j] is the number of literals at the left |
|
// of the level j ancestor. |
|
var leafCounts [maxBitsLimit][maxBitsLimit]int32 |
|
|
|
// Descending to only have 1 bounds check. |
|
l2f := int32(list[2].freq) |
|
l1f := int32(list[1].freq) |
|
l0f := int32(list[0].freq) + int32(list[1].freq) |
|
|
|
for level := int32(1); level <= maxBits; level++ { |
|
// For every level, the first two items are the first two characters. |
|
// We initialize the levels as if we had already figured this out. |
|
levels[level] = levelInfo{ |
|
level: level, |
|
lastFreq: l1f, |
|
nextCharFreq: l2f, |
|
nextPairFreq: l0f, |
|
} |
|
leafCounts[level][level] = 2 |
|
if level == 1 { |
|
levels[level].nextPairFreq = math.MaxInt32 |
|
} |
|
} |
|
|
|
// We need a total of 2*n - 2 items at top level and have already generated 2. |
|
levels[maxBits].needed = 2*n - 4 |
|
|
|
level := uint32(maxBits) |
|
for level < 16 { |
|
l := &levels[level] |
|
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { |
|
// We've run out of both leafs and pairs. |
|
// End all calculations for this level. |
|
// To make sure we never come back to this level or any lower level, |
|
// set nextPairFreq impossibly large. |
|
l.needed = 0 |
|
levels[level+1].nextPairFreq = math.MaxInt32 |
|
level++ |
|
continue |
|
} |
|
|
|
prevFreq := l.lastFreq |
|
if l.nextCharFreq < l.nextPairFreq { |
|
// The next item on this row is a leaf node. |
|
n := leafCounts[level][level] + 1 |
|
l.lastFreq = l.nextCharFreq |
|
// Lower leafCounts are the same of the previous node. |
|
leafCounts[level][level] = n |
|
e := list[n] |
|
if e.literal < math.MaxUint16 { |
|
l.nextCharFreq = int32(e.freq) |
|
} else { |
|
l.nextCharFreq = math.MaxInt32 |
|
} |
|
} else { |
|
// The next item on this row is a pair from the previous row. |
|
// nextPairFreq isn't valid until we generate two |
|
// more values in the level below |
|
l.lastFreq = l.nextPairFreq |
|
// Take leaf counts from the lower level, except counts[level] remains the same. |
|
if true { |
|
save := leafCounts[level][level] |
|
leafCounts[level] = leafCounts[level-1] |
|
leafCounts[level][level] = save |
|
} else { |
|
copy(leafCounts[level][:level], leafCounts[level-1][:level]) |
|
} |
|
levels[l.level-1].needed = 2 |
|
} |
|
|
|
if l.needed--; l.needed == 0 { |
|
// We've done everything we need to do for this level. |
|
// Continue calculating one level up. Fill in nextPairFreq |
|
// of that level with the sum of the two nodes we've just calculated on |
|
// this level. |
|
if l.level == maxBits { |
|
// All done! |
|
break |
|
} |
|
levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq |
|
level++ |
|
} else { |
|
// If we stole from below, move down temporarily to replenish it. |
|
for levels[level-1].needed > 0 { |
|
level-- |
|
} |
|
} |
|
} |
|
|
|
// Somethings is wrong if at the end, the top level is null or hasn't used |
|
// all of the leaves. |
|
if leafCounts[maxBits][maxBits] != n { |
|
panic("leafCounts[maxBits][maxBits] != n") |
|
} |
|
|
|
bitCount := h.bitCount[:maxBits+1] |
|
bits := 1 |
|
counts := &leafCounts[maxBits] |
|
for level := maxBits; level > 0; level-- { |
|
// chain.leafCount gives the number of literals requiring at least "bits" |
|
// bits to encode. |
|
bitCount[bits] = counts[level] - counts[level-1] |
|
bits++ |
|
} |
|
return bitCount |
|
} |
|
|
|
// Look at the leaves and assign them a bit count and an encoding as specified |
|
// in RFC 1951 3.2.2 |
|
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { |
|
code := uint16(0) |
|
for n, bits := range bitCount { |
|
code <<= 1 |
|
if n == 0 || bits == 0 { |
|
continue |
|
} |
|
// The literals list[len(list)-bits] .. list[len(list)-bits] |
|
// are encoded using "bits" bits, and get the values |
|
// code, code + 1, .... The code values are |
|
// assigned in literal order (not frequency order). |
|
chunk := list[len(list)-int(bits):] |
|
|
|
sortByLiteral(chunk) |
|
for _, node := range chunk { |
|
h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint8(n)} |
|
code++ |
|
} |
|
list = list[0 : len(list)-int(bits)] |
|
} |
|
} |
|
|
|
// Update this Huffman Code object to be the minimum code for the specified frequency count. |
|
// |
|
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i. |
|
// maxBits The maximum number of bits to use for any literal. |
|
func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) { |
|
list := h.freqcache[:len(freq)+1] |
|
codes := h.codes[:len(freq)] |
|
// Number of non-zero literals |
|
count := 0 |
|
// Set list to be the set of all non-zero literals and their frequencies |
|
for i, f := range freq { |
|
if f != 0 { |
|
list[count] = literalNode{uint16(i), f} |
|
count++ |
|
} else { |
|
codes[i].len = 0 |
|
} |
|
} |
|
list[count] = literalNode{} |
|
|
|
list = list[:count] |
|
if count <= 2 { |
|
// Handle the small cases here, because they are awkward for the general case code. With |
|
// two or fewer literals, everything has bit length 1. |
|
for i, node := range list { |
|
// "list" is in order of increasing literal value. |
|
h.codes[node.literal].set(uint16(i), 1) |
|
} |
|
return |
|
} |
|
sortByFreq(list) |
|
|
|
// Get the number of literals for each bit count |
|
bitCount := h.bitCounts(list, maxBits) |
|
// And do the assignment |
|
h.assignEncodingAndSize(bitCount, list) |
|
} |
|
|
|
// atLeastOne clamps the result between 1 and 15. |
|
func atLeastOne(v float32) float32 { |
|
if v < 1 { |
|
return 1 |
|
} |
|
if v > 15 { |
|
return 15 |
|
} |
|
return v |
|
} |
|
|
|
// Unassigned values are assigned '1' in the histogram. |
|
func fillHist(b []uint16) { |
|
for i, v := range b { |
|
if v == 0 { |
|
b[i] = 1 |
|
} |
|
} |
|
} |
|
|
|
func histogram(b []byte, h []uint16, fill bool) { |
|
h = h[:256] |
|
for _, t := range b { |
|
h[t]++ |
|
} |
|
if fill { |
|
fillHist(h) |
|
} |
|
}
|
|
|