You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
1.8 KiB
54 lines
1.8 KiB
package crypto |
|
|
|
import ( |
|
"math/big" |
|
|
|
"github.com/go-faster/errors" |
|
) |
|
|
|
// CheckDH performs DH parameters check described in Telegram docs. |
|
// |
|
// Client is expected to check whether p is a safe 2048-bit prime (meaning that both p and (p-1)/2 are prime, |
|
// and that 2^2047 < p < 2^2048), and that g generates a cyclic subgroup of prime order (p-1)/2, i.e. |
|
// is a quadratic residue mod p. Since g is always equal to 2, 3, 4, 5, 6 or 7, this is easily done using quadratic |
|
// reciprocity law, yielding a simple condition on p mod 4g — namely, p mod 8 = 7 for g = 2; p mod 3 = 2 for g = 3; |
|
// no extra condition for g = 4; p mod 5 = 1 or 4 for g = 5; p mod 24 = 19 or 23 for g = 6; and p mod 7 = 3, |
|
// 5 or 6 for g = 7. |
|
// |
|
// See https://core.telegram.org/mtproto/auth_key#presenting-proof-of-work-server-authentication. |
|
// |
|
// See https://core.telegram.org/api/srp#checking-the-password-with-srp. |
|
// |
|
// See https://core.telegram.org/api/end-to-end#sending-a-request. |
|
func CheckDH(g int, p *big.Int) error { |
|
// The client is expected to check whether p is a safe 2048-bit prime |
|
// (meaning that both p and (p-1)/2 are prime, and that 2^2047 < p < 2^2048). |
|
// FIXME(tdakkota): we check that 2^2047 <= p < 2^2048 |
|
// but docs says to check 2^2047 < p < 2^2048. |
|
// |
|
// TDLib check 2^2047 <= too: |
|
// https://github.com/tdlib/td/blob/d161323858a782bc500d188b9ae916982526c262/td/mtproto/DhHandshake.cpp#L23 |
|
if p.BitLen() != RSAKeyBits { |
|
return errors.New("p should be 2^2047 < p < 2^2048") |
|
} |
|
|
|
if err := CheckGP(g, p); err != nil { |
|
return err |
|
} |
|
|
|
return checkPrime(p) |
|
} |
|
|
|
func checkPrime(p *big.Int) error { |
|
if !Prime(p) { |
|
return errors.New("p is not prime number") |
|
} |
|
|
|
sub := big.NewInt(0).Sub(p, big.NewInt(1)) |
|
pr := sub.Quo(sub, big.NewInt(2)) |
|
if !Prime(pr) { |
|
return errors.New("(p-1)/2 is not prime number") |
|
} |
|
|
|
return nil |
|
}
|
|
|